Chymase is a chymotrypsin-like serine protease secreted from mast cells. Mammalian chymases are classified into two subgroups (alpha and beta) according to structure and substrate specificity; human chymase is an alpha-chymase. An important action of chymase is the ACE-independent conversion of Ang I to Ang II, but chymase also degrades the extracellular matrix, activates TGF-beta1 and IL-1beta, forms 31-amino acid endothelins and is involved in lipid metabolism. Under physiological conditions, the role of chymase in blood vessels is uncertain. In pathological situations, however, chymase may be important. In animal models of hypertension and atherosclerosis, chymase may be involved in lipid deposition and intimal and smooth muscle hyperplasia, at least in some vessels. In addition, chymase has pro-angiogenic properties. In human diseased blood vessels (e.g. atherosclerotic and aneurysmal aorta; remodeled pulmonary blood vessels), there are increases in chymase-containing mast cells and/or in chymase-dependent conversion of Ang I to Ang II. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of vascular disease. The effects of chymase can theoretically be attenuated either by reducing availability of the enzyme, with a mast cell stabiliser, or alternatively with specific chymase inhibitors. The mast cell stabiliser, tranilast, was shown to be beneficial in animal models of atherosclerosis, where a prevention protocol was used, but was not effective in clinical trials where it was administered after angioplasty. Chymase inhibitors could have the advantage of being effective even if used after injury. Several orally active inhibitors, including SUN-C8257, BCEAB, NK3201 and TEI-E548, are now available. These have yet to be tested in humans, but promising results have been obtained in animal models of atherosclerosis and angiogenesis. It is concluded that orally active inhibitors of chymase may have a place in the treatment of vascular diseases where injury-induced mast cell degranulation contributes to the pathology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cardiores.2003.11.029 | DOI Listing |
Oncol Res
January 2025
Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.
Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Jeff and Penny Vinik Center for Allergic Disease Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
Mast cells (MCs) expressing a distinctive protease phenotype (MCTs) selectively expand within the epithelium of human mucosal tissues during type 2 (T2) inflammation. While MCTs are phenotypically distinct from subepithelial MCs (MCTCs), signals driving human MCT differentiation and this subset's contribution to inflammation remain unexplored. Here, we have identified TGF-β as a key driver of the MCT transcriptome in nasal polyps.
View Article and Find Full Text PDFFood Funct
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
Food allergies are pathological adverse reactions against harmless dietary proteins. While studies have shown the involvement of host metabolic changes (, lipid metabolism and amino acid metabolism) in the development of food allergy (FA), the adaptive changes in glucose metabolism induced by food allergen exposure remain largely unclear. In this study, BALB/c mice were sensitized intraperitoneally with an ovalbumin (OVA)/aluminum adjuvant, followed by oral OVA challenges to induce anaphylaxis.
View Article and Find Full Text PDFBiol Chem
December 2024
Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., South San Francisco, CA, 94080, USA.
Kallikrein-related peptidase 7 (KLK7) is one of 15 members of the tissue kallikrein family and is primarily expressed in the skin epidermis. The activity of KLK7 is tightly regulated by multiple stages of maturation and reversible inhibition, similar to several other extracellular proteases. In this work, we used protease-specific inhibitors and active site variants to show that KLK7 undergoes autolysis at two separate sites in the 170 and 99 loops (chymotrypsinogen numbering), resulting in a loss of enzymatic activity.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Mas-related G protein-coupled receptor b2 (Mrgprb2) binding to its cationic endogenous and exogenous ligands induces mast cell degranulation and promotes inflammation in mice. However, the physiological roles of its human homologue MRGPRX2 remain unclear. Here we aimed to elucidate the mechanisms by which MRGPRX2 regulates vascular permeability, and generated MRGPRX2 knock-in (MRGPRX2-KI) and Mrgprb2 knockout (Mrgprb2-KO) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!