Toxaphene detoxification and acclimation in Daphnia magna: do cytochrome P-450 enzymes play a role?

Comp Biochem Physiol C Toxicol Pharmacol

Department of Fisheries and Wildlife Biology, Colorado State University, 136 JVK Wagar Building, Fort Collins, CO 80523-1474, USA.

Published: January 2004

Toxaphene is a persistent environmental contaminant that has been shown to alter male production in Daphnia magna and to induce P-450 activity in mammals. Cytochrome P-450-mediated metabolism may lead to xenobiotic detoxification resulting in acclimation. To determine if D. magna acclimate to toxaphene via P-450 pathways, chronic and acute toxicity tests were conducted with D. magna exposed to toxaphene in the presence and absence of piperonyl butoxide (PBO), an inhibitor of cytochrome P-450 enzymes. Toxaphene exposure increased male production in acute but not chronic assays, indicating that D. magna may acclimate to chronic toxaphene exposure. Upon co-administration of toxaphene and PBO in chronic tests, D. magna exhibited a decline in growth rate, fecundity and survival. The observed toxaphene acclimation in chronic tests, along with its increased toxicity in the presence of a P-450 suppressor, suggests that P-450 enzymes may contribute to detoxification and subsequent acclimation of D. magna to chronic toxaphene exposure. Additional chronic toxicity tests indicated that toxaphene acclimation occurs between 7 and 12 days following initial exposure, at which time sex determination is no longer affected. Thus, sublethal toxaphene toxicity effects such as reproductive impairments may be detectable with acute but not chronic tests, potentially due to the upregulation of P-450 isozymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2003.11.005DOI Listing

Publication Analysis

Top Keywords

p-450 enzymes
12
toxaphene exposure
12
chronic tests
12
toxaphene
11
detoxification acclimation
8
daphnia magna
8
cytochrome p-450
8
male production
8
magna acclimate
8
chronic
8

Similar Publications

Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.

View Article and Find Full Text PDF

Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.

Curr Top Dev Biol

January 2025

Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:

In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!