Organ movements that occur naturally as a result of vital functions such as respiration and heartbeat cause deterioration of image quality in nuclear medicine imaging. Among these movements, respiration has a large effect, but there has been no practical method of correcting for this. In the present study, we examined a method of correction that uses ultrasound images to correct baseline shifts caused by respiration in cardiac nuclear medicine examinations. To evaluate the validity of this method, simulation studies were conducted with an X-ray TV machine instead of a nuclear medicine scanner. The X-ray TV images and ultrasound images were recorded as digital movies and processed with public domain software (Scion Image). Organ movements were detected in the ultrasound images of the subcostal four-chamber view mode using slit regions of interest and were measured on a two-dimensional image coordinate. Then translational shifts were applied to the X-ray TV images to correct these movements by using macro-functions of the software. As a result, respiratory movements of about 20.1 mm were successfully reduced to less than 2.6 mm. We conclude that this correction technique is potentially useful in nuclear medicine cardiology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.6009/jjrt.kj00003174071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!