Nucleotide incorporation by the herpes simplex virus type 1 DNA polymerase catalytic subunit (pol) is less faithful than for most replicative DNA polymerases, despite the presence of an associated 3'- to 5'-exonuclease (exo) activity. To determine the aspects of fidelity affected by the exo activity, nucleotide incorporation and mismatch extension frequency for purified wild-type and an exo-deficient mutant (D368A) pol were compared using primer/templates that varied at only a single position. For both enzymes, nucleotide discrimination during incorporation occurred predominantly at the level of K(m) for nucleotide and was the major contributor to fidelity. The contribution of the exo activity to reducing the efficiency of formation of half of all possible mispairs was 6-fold or less, and 30-fold when averaged for the formation of all possible mispairs. In steady-state reactions, mismatches imposed a significant kinetic barrier to extension independent of exo activity. However, during processive DNA synthesis in the presence of only three nucleotides, misincorporation and mismatch extension were efficient for both exo-deficient and wild-type pol catalytic subunits, although slower kinetics of mismatch extension by the exo-deficient pol were observed. The UL42 processivity factor decreased the extent of misincorporation by both the wild-type and the exo-deficient pol to similar levels, but mismatch extension by the wild-type pol.UL42 complex was much less efficient than by the mutant pol.UL42. Thus, despite relatively frequent (1 in 300) misincorporation events catalyzed by wild-type herpes simplex virus pol.UL42 holoenzyme, mismatch extension occurs only rarely, prevented in part by the kinetic barrier to extending a mismatch. The kinetic barrier also increases the probability that a mismatched primer terminus will be transferred to the exo site where it can be excised by the associated exo activity and subsequently extended with correct nucleotide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M309848200 | DOI Listing |
Cell Chem Biol
December 2024
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA. Electronic address:
Chemical inducers of proximity (CIPs) are molecules that recruit one protein to another and introduce new functionalities toward modulating protein states and activities. While CIP-mediated recruitment of E3 ligases is widely exploited for the development of degraders, other therapeutic modalities remain underexplored. We describe a non-degrader CIP-DNA-encoded library (CIP-DEL) that recruits FKBP12 to target proteins using non-traditional acyclic structures, with an emphasis on introducing stereochemically diverse and rigid connectors to attach the combinatorial library.
View Article and Find Full Text PDFTalanta
December 2024
Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:
The flap endonuclease 1 (FEN1) plays a key role in DNA replication and repair, its aberrant expression is associated with tumor development, so it has been recognized as a promising biomarker for a variety of cancers. Here, a novel "turn on" mode gold nanocube-enhanced surface-enhanced Raman scattering (SERS) biosensor was constructed by combining a heated Au electrode (HAuE), exonuclease III (Exo III)-assisted cycle amplification, and gold nanocube (AuNC)-based SERS enhancement to achieve highly sensitive detection of FEN1 activity. The SERS tag was prepared using the Raman reporter modified on the AuNC surface, and the high electromagnetic field provided by the sharp geometric feature of AuNC greatly enhanced the SERS signal.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China.
While previous studies have established the role of exosomal miR-552-5p in promoting gastric cancer (GC) progression, the exact mechanisms through which it modulates the PD-1/PD-L1 axis to affect NK cell function and subsequently influence GC epithelial-mesenchymal transition (EMT) remain to be elucidated. Western blot, transmission electron microscopy (TEM), and nanoparticle tracking analysis were used to characterize exosomes that were isolated from GC cell supernatants. Subcutaneous AGS cell injections expressing either Lv-miR-552-5p or Lv-NC were administered to nude BALB/C mice.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China.
Ginsenosides possess potential protective effects against cisplatin (CDDP)-induced toxicity, but the limited bioavailability of ginsenosides hampered their therapeutic application. Ginseng exosomes (G-Exo), which are active ingredients in ginseng, exhibit excellent biocompatibility and low immunogenicity. Here, G-Exo were isolated from ginseng roots through a combination of ultracentrifugation and sucrose gradient centrifugation techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!