The novel cobalt corrolazine (Cz) complexes (TBP)(8)CzCoCN (1) and (TBP)(8)CzCo(CCSiPh(3)) (2) have been synthesized and examined in light of the recent intense interest regarding the role of corrole ligands in stabilizing high oxidation states. In the case of 2, the molecular structure has been determined by X-ray crystallography, revealing a short Co[bond]C distance of 1.831(4) A and an intermolecular pi-stacking interaction between Cz ring planes, and this structure has been analyzed in regards to the electronic configuration. By a combination of spectroscopic techniques it has been shown that 1 is best described as a cobalt(III)[bond]pi-cation-radical complex, whereas 2 is likely best represented as the resonance hybrid (Cz)Co(IV)(CCSiPh(3)) <--> (Cz+*)Co(III)(CCSiPh(3)). The reduced cobalt(II) complex, [(TBP)(8)CzCo(II)(py)](-), has been generated in situ and shown to bind dioxygen at low temperature to give [(TBP)(8)CzCo(III)(py)(O(2))](-). For the reduced complex [(TBP)(8)CzCo(II)(py)](-), the EPR spectrum in frozen solution is indicative of a low-spin cobalt(II) complex with a d(z)2 ground state. Exposure of [(TBP)(8)CzCo(II)(py)](-) to O(2) leads to the reversible formation of the cobalt(III)-superoxo complex [(TBP)(8)CzCo(III)(py)(O(2))](-), which has been characterized by EPR spectroscopy. VT-EPR measurements show that the dioxygen adduct is stable up to T approximately 240 K. This work is the first observation, to our knowledge, of O(2) binding to a cobalt(II) corrole.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja036983s | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, Faculty of Science, Sohag University, Sohag, -82534, Egypt; Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia. Electronic address:
The condensing reaction of 2-hydroxy-1-naphthaldehyde with quinoxalyl-2-carbohydrazide resulted in synthesizing of a novel derivative of hydrazone quinoxalyl ligand (Hdpq). The bonding behavior between Hdpq and Co(II) ion was investigated in molar ratios of 1: 1 and 2: 1 to produce two different complexes, Codpq and Co(dpq), respectively. Their chemical structure was verified using several spectroscopic approaches.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria.
Monensic acid is a natural polyether ionophore and is a therapeutic of first choice in veterinary medicine for the control of coccidiosis. Although known as a sodium-binding ligand, it can also form a variety of coordination species depending on experimental conditions applied. In this study, we present the crystal structures and properties of Co(II) and Mn(II) complexes of sodium monensinate (MonNa) derived from the reaction of MonNa with cobalt or manganese dinitrates.
View Article and Find Full Text PDFDalton Trans
November 2024
Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
First prepared in the late 70s, the pro-ligand 1,3-bis(3,5-dioxo-1-hexyl)benzene (Hbdhb) contains two acetoacetyl terminations linked to a central 1,3-phenylene unit through dimethylene bridges. Since each termination can be either in diketonic or keto-enolic form, in organic solution it exists as a mixture of three spectroscopically resolvable tautomers. In the presence of pyridine, Co and the bdhb anion form a crystalline dimeric compound with formula [Co(bdhb)(py)] (2) and a Co⋯Co separation of more than 11 Å.
View Article and Find Full Text PDFDalton Trans
September 2024
Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
ACS Omega
August 2024
Department of Chemistry, University of Botswana, Notwane Rd, P/bag UB, 00704 Gaborone, Botswana.
Research into heterocyclic ligands has increased in popularity due to their versatile applications in the biomedical field. Quinoline derivatives with their transition metal complexes are popular scaffolding molecules in the ongoing pursuit of newer and more effective bioactive molecules. Subsequently, this work reports on the synthesis and possible biological application of new Zn(II) and Co(II) complexes with a bidentate quinoline derivative ligand (H ), [(H ):()-2-(((6-fluoro-2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!