Determination of the disulfide bond arrangement of dengue virus NS1 protein.

J Biol Chem

Department of Microbiology and Parasitology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Published: May 2004

The 12 half-cystines of NS1 proteins are absolutely conserved among flaviviruses, suggesting their importance to the structure and function of these proteins. In the present study, peptides from recombinant Dengue-2 virus NS1 were produced by tryptic digestion in 100% H(2)(16)O, peptic digestion in 50% H(2)(18)O, thermolytic digestion in 50% H(2)(18)O, or combinations of these digestion conditions. Peptides were separated by size exclusion and/or reverse phase high performance liquid chromatography and examined by matrix-assisted laser desorption ionization-time of flight mass spectrometry, matrix-assisted laser desorption ionization post-source decay, and matrix-assisted laser desorption ionization tandem mass spectrometry. Where digests were performed in 50% H(2)(18)O, isotope profiles of peptide ions aided in the identification and characterization of disulfide-linked peptides. It was possible to produce two-chain peptides containing C1/C2, C3/C4, C5/C6, and C7/C12 linkages as revealed by comparison of the peptide masses before and after reduction and by post-source decay analysis. However, the remaining four half-cystines (C8, C9, C10, and C11) were located in a three-chain peptide of which one chain contained adjacent half-cystines (C9 and C10). The linkages of C8/C10 and C9/C11 were determined by tandem mass spectrometry of an in-source decay fragment ion containing C9, C10, and C11. This disulfide bond arrangement provides the basis for further refinement of flavivirus NS1 protein structural models.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M312907200DOI Listing

Publication Analysis

Top Keywords

50% h218o
12
matrix-assisted laser
12
laser desorption
12
mass spectrometry
12
disulfide bond
8
bond arrangement
8
virus ns1
8
ns1 protein
8
digestion 50%
8
desorption ionization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!