1. We tested whether pretreatment of reagents known to induce hypoxia-inducible factor-1 (HIF-1) may confer chemoresistance against cytotoxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to rat C6 glioma cells. We also studied which cytotoxic mechanism(s) of chloroethylnitrosoureas could be neutralized by cobalt preconditioning. 2. Preconditioning of rat C6 glioma cells with cobalt chloride (300 microm, 2 h) induced HIF-1 binding activity based on electrophoretic mobility shift assay (EMSA). Results from Western blotting confirmed a heightened HIF-1alpha level upon cobalt chloride exposure (300-400 microm, 2 h). Cobalt chloride (300 microm) pretreatment for 2 h substantially neutralized BCNU toxicity, leading to increases in glioma cell survival based on MTT assay. In addition, pre-exposure of C6 cells with desferrioxamine (DFO; 400 microm, 3 h), an iron chelator known to activate HIF-1, also induced HIF-1 binding and rendered the glioma cells resistant to cytotoxicity of BCNU. 3. Pre-incubation with cobalt chloride abolished the cytotoxicity of several carbamoylating agents including 2-chloroethyl isocyanate and cyclohexyl isocyanate, the respective carbamoylating metabolites of BCNU and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea. The protective effect of cobalt exposure, however, was not observed when cells were challenged with alkylating agents including temozolomide. 4. Cadmium chloride (50 microm) effectively reversed cobalt-induced HIF-1 activation. Correspondingly, cadmium chloride suppressed carbamoylating chemoresistance mediated by cobalt chloride pretreatment. Furthermore, both double-stranded oligodeoxynucleotide (ODN) decoy with HIF-1 cognate sequence and antisense phosphorothioate ODNs against HIF-1alpha partially abolished the carbamoylating chemoresistance associated with cobalt preconditioning. 5. Our results suggest that cobalt- or DFO-preconditioning may enhance glioma carbamoylating chemoresistance that is dependent, at least in part, on induction of HIF-1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574263PMC
http://dx.doi.org/10.1038/sj.bjp.0705687DOI Listing

Publication Analysis

Top Keywords

cobalt chloride
20
carbamoylating chemoresistance
16
glioma cells
16
cobalt
9
hypoxia-inducible factor-1
8
rat glioma
8
cobalt preconditioning
8
chloride 300
8
300 microm
8
induced hif-1
8

Similar Publications

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

In Vivo Imaging of Cobalt-Induced Ocular Toxicity in a Mouse Model.

Methods Protoc

January 2025

The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion-Institute of Technology, Haifa 3525433, Israel.

Cobalt is a trace element, crucial for red blood cell formation and neurological function. Cobalt toxicity is often only diagnosed after severe manifestations, including visual impairment. We aimed to investigate whether optical coherence tomography (OCT) and magnetic resonance imaging (MRI) can effectively detect cobalt-induced ocular toxicity in a murine model.

View Article and Find Full Text PDF

Background And Study Aims: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates. In vitro model is an indispensable tool to study the pathogenesis of NEC. This study explored the effects of different stress factors on intestinal injury in vitro.

View Article and Find Full Text PDF

Toxic Effects of Cobalt on Erythroid Progenitor Cells.

Chem Res Toxicol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Cobalt is a crucial trace element that widely exists in natural environments and is necessary for normal physiological function. However, excessive cobalt exposure leads to various adverse health effects, especially hematological and endocrine dysfunctions. Here, we investigated the toxicity of cobalt on early erythropoiesis by using ex vivo cultured erythroid progenitor cells (EPCs).

View Article and Find Full Text PDF

Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!