Collagen matrices can be used as non-viral biocompatible gene carriers for localized implantable gene therapy. Collagen matrices embedding pDNA with enhanced binding through condensing agent linkage to the matrix or to the pDNA have been formulated, and characterized in various systems. pDNA and condensed pDNA were released intact from the matrices within 1-2 days. In vitro transfection with collagen matrices containing pDNA (luciferase encoding), pDNA in liposome (LIP), and pDNA with polyethylenimine (PEI) resulted in significantly higher expression levels in comparison to naked pDNA. pDNA-LIP matrices exhibited a dose response transfection of NIH 3T3, 293, MDA-MB-231 and smooth muscle cells (SMCs) in cell cultures. Subdermal implantations of collagen-polylysine-pDNA matrices in rats resulted in significantly higher gene expression levels in comparison to non-condensed pDNA matrices. Perivascular treatment with pDNA matrix and of naked pDNA solution in balloon-injured rat carotid arteries resulted in significant expression. In conclusion, a facile method for embedding cationic formulations of pDNA in collagen matrices was developed. These bioactive matrices seem to be suitable for tissue engineering and local gene therapy strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2003.11.001 | DOI Listing |
J Stomatol Oral Maxillofac Surg
January 2025
Department of Oral Surgery, Faculty of Dental Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon. Electronic address:
Soft tissue deficiency around dental implants can negatively impact outcomes in terms of esthetics and long-term stability. While autogenous connective tissue grafting is still considered the gold standard treatment, alternative approaches are being proposed primarily to enhance patient comfort and avoid invasive procedures such as two-sites surgeries using xenogeneic collagen matrices. Despite the advantages, the quality of the regenerated tissues remains unpredictable and, in many cases, questionable, highlighting the need for alternative and innovative approaches.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression.
View Article and Find Full Text PDFSuccessful engraftment of skin grafts highly depends on the quality of the wound bed. Good quality of blood vessels near the surface is critical to support the viability of the graft. Ischemic, irradiated scar tissue, bone and tendons will not have the sufficient blood supply.
View Article and Find Full Text PDFInt Wound J
January 2025
Colzyx AB, Medicon Village, Lund, Sweden.
Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g.
View Article and Find Full Text PDFLaryngoscope Investig Otolaryngol
February 2025
Objectives: This study aimed to investigate the histological and ultrastructural features of the elastic cartilage at the tip of the vocal process in the arytenoid cartilage, which is essential for laryngeal biomechanics.
Methods: Five larynges, including the vocal folds and epiglottis, were examined using transmission electron microscopy. The elastic cartilage at the tip of the vocal process was compared to the epiglottic cartilage within the same larynx to elucidate structural differences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!