Reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) are produced in the skin under the influence of UV radiation. These compounds are highly reactive and can induce DNA lesions in epidermal cells. Melanin is considered to protect human skin against DNA damage by absorbing UV radiation. We have investigated whether melanin can, in addition, offer protection against the effects of H(2)O(2) in human melanocytes and HaCaT keratinocytes. In the present study, it was shown that 40 and 100 microM H(2)O(2) increased the number of DNA strand breaks as measured using the comet assay, in melanocytes of Caucasian origin. In melanocytes of the same origin in which melanin levels were increased by culturing in presence of 10 mM NH(4)Cl and elevated l-tyrosine, H(2)O(2)-induced DNA damage was reduced compared to that in control melanocytes. Similarly, HaCaT cells that were loaded with melanin were better protected against H(2)O(2)-induced DNA strand breaks than control HaCaT cells. These protective effects of melanin were mimicked by the intracellular Ca(2+)-chelator BAPTA. Thus, BAPTA reduced the level of H(2)O(2)-induced DNA strand breaks in melanocytes. Like BAPTA, melanin is known to be a potent chelator of Ca(2+) and this was confirmed in the present study. It was shown that melanin levels in melanocytic cells correlated directly with intracellular Ca(2+) binding capacity and, in addition, correlated inversely with H(2)O(2)-induced increases in intracellular Ca(2+). Our results show that melanin may have an important role in regulating intracellular Ca(2+) homeostasis and it is suggested that melanin protects against H(2)O(2)-induced DNA strand breaks in both melanocytes and keratinocytes and through its ability to bind Ca(2+).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2003.11.007DOI Listing

Publication Analysis

Top Keywords

h2o2-induced dna
20
dna strand
20
strand breaks
20
intracellular ca2+
12
melanin
10
melanin protects
8
melanocytes keratinocytes
8
dna
8
ability bind
8
bind ca2+
8

Similar Publications

Cell senescence impedes the self‑renewal and osteogenic capacity of bone marrow mesenchymal stem cells (BMSCs), thus limiting their application in tissue regeneration. The present study aimed to elucidate the role and mechanism of repetitive element (RE) activation in BMSC senescence and osteogenesis, as well as the intervention effect of quercetin. In an H2O2‑induced BMSC senescence model, quercetin treatment alleviated senescence as shown by a decrease in senescence‑associated β‑galactosidase (SA‑β‑gal)‑positive cell ratio, increased colony formation ability and decreased mRNA expression of p21 and senescence‑associated secretory phenotype genes.

View Article and Find Full Text PDF
Article Synopsis
  • Cellular oxidative stress from reactive oxygen species (ROS) is linked to disease development and can lead to mitochondrial DNA (mtDNA) damage, mutations, and changes in copy numbers.
  • This study created a new test using supercoiling-sensitive quantitative PCR (ss-qPCR) to measure mtDNA damage, repair, and copy number changes in oral cancer cells under oxidative stress.
  • Results showed that while low levels of hydrogen peroxide (H2O2) induced repair mechanisms in mtDNA, high levels caused significant damage, leading to decreased mtDNA copy numbers, growth arrest, and cell death, demonstrating different responses between cancer and normal cells.
View Article and Find Full Text PDF

Background: Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage.

View Article and Find Full Text PDF

Systemic oxidative stress stemming from increased free radical production and reduced antioxidant capacity are common characteristics of obese individuals. Using hydrogen peroxide (H2O2) to induce DNA damage in vitro, in peripheral blood mononuclear cells (PBMCs) from obese subjects and controls, the DNA protective ability of dihidroqercetin (DHQ) and biochaga (B) alone or in combination, were evaluated. The effects of DHQ and B were estimated under two experimental conditions: pre-treatment, where cells were pre-incubated with the substances prior to H2O2 exposure; and post-treatment when cells were first exposed to H2 H2O2, and further treated with the compounds.

View Article and Find Full Text PDF

Implication of Thioredoxin 1 and Glutaredoxin 1 in H2O2-induced Phosphorylation of JNK and p38 MAP Kinases.

Curr Mol Med

January 2024

Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry, Medical Faculty, (Hus 420, Lab1, plan11) S-581 85 Linköping, Sweden.

Background: Aerobic organisms continuously generate small amounts of Reactive Oxygen Species (ROS), which are involved in the oxidation of sensitive cysteine residues in proteins, leading to the formation of disulfide bonds. Thioredoxin (Trx1) and Glutaredoxin (Grx1) represent key antioxidant enzymes reducing disulfide bonds.

Objective: In this work, we have focused on the possible protective effect of Trx1 and Grx1 against oxidative stress-induced DNA damage and apoptosis-signaling, by studying the phosphorylation of MAP kinases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!