Microglia promote the death of developing Purkinje cells.

Neuron

Biologie des Interactions Neurone-glie, INSERM U.495, IFR 70, UPMC, 47 Bd de l'hôpital, 75013 Paris, France.

Published: February 2004

The loss of neuronal cells, a prominent event in the development of the nervous system, involves regulated triggering of programmed cell death, followed by efficient removal of cell corpses. Professional phagocytes, such as microglia, contribute to the elimination of dead cells. Here we provide evidence that, in addition to their phagocytic activity, microglia promote the death of developing neurons engaged in synaptogenesis. In the developing mouse cerebellum, Purkinje cells die, and 60% of these neurons that already expressed activated caspase-3 were engulfed or contacted by spreading processes emitted by microglial cells. Apoptosis of Purkinje cells in cerebellar slices was strongly reduced by selective elimination of microglia. Superoxide ions produced by microglial respiratory bursts played a major role in this Purkinje cell death. Our study illustrates a mammalian form of engulfment-promoted cell death that links the execution of neuron death to the scavenging of dead cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0896-6273(04)00069-8DOI Listing

Publication Analysis

Top Keywords

purkinje cells
12
cell death
12
microglia promote
8
promote death
8
death developing
8
dead cells
8
cells
7
death
6
microglia
4
purkinje
4

Similar Publications

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shenzhen Bay Laboratory, Shenzhen, Guandong, China.

Background: The classic mode of STING activation is through binding the cyclic dinucleotide 2'3'-cyclic GMP-AMP (cGAMP), produced by the DNA sensor cyclic GMP-AMP synthase (cGAS), which is important for the innate immune response to microbial infection and autoimmune disease. Modes of STING activation that are independent of cGAS are much less well understood. We wanted to explore the interactome of STING on the organelles during its trafficking route and to understand the regulatory network of STING signaling.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Ibadan, Ibadan, Oyo, Nigeria.

Background: The brain is a potential target for aluminium toxicity as it induces oxidative stress, strategies, rich in polyphenolic compound, containing flavonoid and possessing antioxidant property, found in natural plant products, to attenuate aluminium-induced impairments could provide a potential therapeutic intervention and protection for aluminium neurotoxicity.

Method: Forty adult rats weighing between 160 - 165g was used. The rats were divided into four groups (n = 10).

View Article and Find Full Text PDF

Cerebellar Transcranial AC Stimulation Produces a Frequency-Dependent Bimodal Cerebellar Output Pattern.

Cerebellum

January 2025

Department of Neuroscience and Physiology, Grossman School of Medicine, NYU Neuroscience Institute, New York University, New York, NY, 10016, USA.

Cerebellar transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, realization of this potential has been limited by gaps in our knowledge of how ctACS affects cerebellar output on single cell and population levels. Previously, we showed that AC stimulation applied to the cerebellar surface produced a strong, frequency-dependent modulation of Purkinje cell (PC) and cerebellar nuclear (CN) cell activity.

View Article and Find Full Text PDF

Left bundle branch block - innocent bystander, silent menace, or both.

Heart Rhythm

December 2024

Christian-Albrechts-University, Medical Faculty, Christian-Albrechts-Platz 4, 24118 Kiel, Germany; University of Applied Science, Life Sciences, An der Karlstadt 8, 27568 Bremerhaven, Germany. Electronic address:

Left bundle branch block (LBBB) causes immediate electrical and mechanical dys-synchrony of the left ventricle (LV) and gradual structural damages in the Purkinje cells and myocardium. Mechanical dys-synchrony reduces the LV ejection fraction (EF) instantly, but only to ≈55% in an otherwise normal heart. Because of the heart's in-built functional redundancy, a patient with LBBB does not always notice the heart's reduced efficiency straight away.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!