15-Deoxy-Delta(12,14)prostaglandin J(2) (15-d-PGJ(2)), a terminal metabolite of the J-series cyclopentenone prostaglandins, influences a variety of cellular processes including gene expression, differentiation, growth, and apoptosis. As a ligand of peroxisomal proliferator-activated receptor gamma (PPAR gamma), 15-d-PGJ(2) can transactivate PPAR gamma-responsive promoters. Previously, we showed that multidrug resistance proteins MRP1 and MRP3 attenuate cytotoxic and transactivating activities of 15-d-PGJ(2) in MCF7 breast cancer cells. Attenuation was glutathione-dependent and was associated with formation of the glutathione conjugate of 15-d-PGJ(2), 15-d-PGJ(2)-SG, and its active efflux by MRP. Here we have investigated whether the glutathione S-transferases (GST) can influence biological activities of 15-d-PGJ(2). MCF7 cells were stably transduced with human cytosolic GST isozymes M1a, A1, or P1a. These GSTs had no effect on 15-d-PGJ(2) cytotoxicity when expressed either alone or in combination with MRP1. However, expression of any of the three GSTs significantly inhibited 15-d-PGJ(2)-dependent transactivation of a PPAR gamma-responsive reporter gene. The degree of inhibition correlated with the level of GST expressed. Under physiologic conditions, the nonenzymatic rate of 15-d-PGJ(2) conjugation with glutathione was significant. Of the three GST isozymes, only GSTM1a-1a further stimulated the rate of 15-d-PGJ(2)-SG formation. Moreover, GSTM1a-1a rate enhancement was only a transient burst that was complete within 15 s. Hence, catalysis plays little, if any, role in GST inhibition of 15-d-PGJ(2)-dependent transactivation. In contrast, inhibition of transactivation was associated with strong GST/15-d-PGJ(2) interactions. Potent inhibition by 15-d-PGJ(2) and 15-d-PGJ(2)-SG of GST activity was observed with K(i) in the 0.15-2.0 microM range for the three GST isozymes, results suggesting avid associations between GST and 15-d-PGJ(2) or 15-d-PGJ(2)-SG. Electrospray ionization mass spectrometry (ESI/MS) studies revealed no stable adducts of GST and 15-d-PGJ(2) indicating that GST/15-d-PGJ(2) interactions are primarily noncovalent. These results are consistent with a mechanism of GST-mediated inhibition of transactivation in which GST binds 15-d-PGJ(2) and 15-d-PGJ(2)-SG thereby sequestering the ligands in the cytosol away from their nuclear target, PPAR gamma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi035936+ | DOI Listing |
Antioxidants (Basel)
October 2024
Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland.
Phospholipids and their metabolites play an important role in maintaining the membrane integrity and the metabolic functions of keratinocytes under physiological conditions and in the regeneration process after exposure to high-energy UVB radiation. Therefore, in the search for compounds with a protective and regenerative effect on keratinocyte phospholipids, the effectiveness of two antioxidant compounds has been tested: a stable derivative of ascorbic acid, 3-O-ethyl ascorbic acid (EAA) and cannabigerol (CBG), both of which are primarily located in the membrane structures of keratinocytes. In addition, this study has demonstrated that EAA and CBG, especially in a two-component combination, enhance the antioxidant properties of keratinocytes and reduce lipid peroxidation assessed at the level of MDA (malondialdehyde)/neuroprostanes.
View Article and Find Full Text PDFInt J Mol Sci
September 2021
King Fahd Medical Research Center, Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients.
View Article and Find Full Text PDFFASEB J
September 2020
Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
Sepsis, a systemic inflammatory response syndrome (SIRS) caused by infection, is a major public health concern with limited therapeutic options. Infection disturbs the homeostasis of host, resulting in excessive inflammation and immune suppression. This has prompted the clinical use of immunomodulators to balance host response as an alternative therapeutic strategy.
View Article and Find Full Text PDFJ Biol Chem
April 2019
From the Department of Biochemistry, University of Colorado, Boulder, Colorado 80309 and
Stress granules (SGs) are cytoplasmic RNA-protein aggregates formed in response to inhibition of translation initiation. SGs contribute to the stress response and are implicated in a variety of diseases, including cancer and some forms of neurodegeneration. Neurodegenerative diseases often involve chronic phosphorylation of eukaryotic initiation factor 2α (eIF2α), with deletions of eIF2α kinases or treatment with eIF2α kinase inhibitors being protective in some animal models of disease.
View Article and Find Full Text PDFFront Physiol
March 2018
Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Third Military Medical University, Chongqing, China.
The modulation of arachidonic acid (AA) metabolism pathway is identified in metabolic alterations after hypoxia exposure, but its biological function is controversial. We aimed at integrating plasma metabolomic and transcriptomic approaches to systematically explore the roles of the AA metabolism pathway in response to acute hypoxia using an acute mountain sickness (AMS) model. Blood samples were obtained from 53 enrolled subjects before and after exposure to high altitude.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!