Stem cell plasticity, beyond alchemy.

Int J Hematol

Department of Pathology, University of Florida College of Medicine, Gainesville, Florida 32610, USA.

Published: January 2004

Cell plasticity is a central issue in stem cell biology. Differentiated somatic nuclei have the flexibility to dedifferentiate when transferred into oocytes or when fused to pluripotent embryonic stem cells. Recent publications also claim that somatic stem cells can convert into developmentally unrelated cell types both in vivo and ex vivo without such drastic cell manipulations. Some of these claims are still controversial, making it difficult for us to determine the reality of somatic stem cell plasticity. Indeed, we have heard enough about the "potentials" of cell plasticity; how much do we know about mechanisms? A fundamental issue in current stem cell biology is to understand the mechanisms underlying cell plasticity. In this short review, we overview three research fields related to cell plasticity: nuclear transfer, transdifferentiation, and cell fusion, with an emphasis on studies of molecular mechanisms underlying cell plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02983528DOI Listing

Publication Analysis

Top Keywords

cell plasticity
28
stem cell
16
cell
11
cell biology
8
stem cells
8
somatic stem
8
mechanisms underlying
8
underlying cell
8
plasticity
7
stem
6

Similar Publications

Upregulated astrocyte HDAC7 induces Alzheimer-like tau pathologies via deacetylating transcription factor-EB and inhibiting lysosome biogenesis.

Mol Neurodegener

January 2025

College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.

Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.

View Article and Find Full Text PDF

Diversity and function of regulatory T cells in health and autoimmune diseases.

J Autoimmun

January 2025

Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China. Electronic address:

Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status.

View Article and Find Full Text PDF

Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions.

Adv Sci (Weinh)

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China.

Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

People with type 2 diabetes (T2D) have a greater risk of developing neurodegenerative diseases, like Alzheimer's disease, in later life. Exogenous ketone supplements containing the ketone body β-hydroxybutyrate (β-OHB) may be a strategy to protect the brain as β-OHB can support cerebral metabolism and promote neuronal plasticity via expression of brain-derived neurotrophic factor (BDNF). Parallel human (ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!