Background: Adenoviral gene transfer to adult skeletal muscle is hindered by several major limitations, including host immune responses and maturation-dependent loss of myofiber infectivity. Ex vivo gene delivery is more efficient than direct viral injection in surmounting maturation-dependent adenoviral transduction. Here we investigated the use of helper cells to improve the efficiency of ex vivo gene transfer to adult mouse skeletal muscle.

Methods: New producer cells carrying the E1 gene of adenovirus type 5 (E32 cells) were developed using primary myoblasts from mdx mice. The E32 cells and 293 cells were infected with an E1-deleted first-generation adenovirus carrying the LacZ gene. These transduced helper cells were injected into the skeletal muscle of adult mdx and SCID mice.

Results: LacZ-positive mature myofibers were detected in the skeletal muscle of adult mice sacrificed 5 days post-injection. The gene transfer efficiency using 293 cells and E32 cells was 6.2 and 3.6 times higher than myoblast-mediated gene transfer, respectively. Ex vivo gene transfer of these cell types led to a better outcome than did direct adenoviral injection.

Conclusions: We achieved more efficient adenoviral gene transduction by using 293 and E32 helper cells than by myoblast-mediated gene transfer and direct viral injection. These helper cells also enabled adenoviral gene transfer to mature myofibers. The mechanisms by which this method facilitated adenoviral gene transfer to mature myofibers remains unclear; however, we hypothesize that the in vivo occurrence of cytopathic effects (CPE) in the transduced 293 and E32 helper cell populations facilitated the improved adenoviral transduction of myofibers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jgm.480DOI Listing

Publication Analysis

Top Keywords

gene transfer
36
helper cells
20
vivo gene
16
skeletal muscle
16
adenoviral gene
16
transfer mature
12
gene
12
e32 cells
12
mature myofibers
12
cells
11

Similar Publications

High-resolution dissection of human cell type-specific enhancers in cis and trans activities.

Genomics

January 2025

Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, PR China. Electronic address:

The spatiotemporal-specific gene expression is regulated by cell-type-specific regulatory elements. Here we selected the H3K4me1-associated DNA sequences as candidate enhancers in two different human cell lines and performed ChIP-STARR-seq to quantify the cell-type-specific enhancer activities with high-resolution. We investigated how the activity landscape of enhancer repository would change when transferred from native cells (cis activity) to another cell lines (trans activity).

View Article and Find Full Text PDF

Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells.

View Article and Find Full Text PDF

Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.

View Article and Find Full Text PDF

The fate of intracellular and extracellular antibiotic resistance genes during ultrafiltration-ultraviolet-chlorination in a full-scale wastewater tretament plant.

J Hazard Mater

January 2025

Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia. Electronic address:

Effluent from wastewater treatment plants (WWTPs) is recognized as a significant source of antibiotic resistance genes (ARGs) in the environment. Advanced treatment processes such as ultrafiltration (UF), ultraviolet (UV) light disinfection, and chlorination have emerged as promising approaches for ARG removal. However, the efficacy of sequential disinfection processes, such as UF-UV-chlorination on intracellular (iARGs) and extracellular ARGs (eARGs), remains largely unknown.

View Article and Find Full Text PDF

Understanding Tankyrase Inhibitors and Their Role in the Management of Different Cancer.

Curr Cancer Drug Targets

January 2025

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.

Cancer manifests as uncontrolled cell proliferation. Tankyrase, a poly(ADP-ribose) polymerase member, is vital in Wnt signal transmission, making it a promising cancer therapy target. The Wnt/β-catenin pathway regulates critical biological processes like genomic stability, gene expression, energy utilization, and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!