Reactive oxygen species (ROS) disrupt the barrier function of airway epithelial cells through a mechanism that appears to involve remodeling of the actin cytoskeleton. Similarly, keratinocyte growth factor (KGF) has been shown to protect against ROS-induced loss of barrier function through a mechanism that may also involve the actin cytoskeleton. To further determine the role of the actin cytoskeleton in ROS-induced barrier injury, we quantified the relative amount of total actin associated with the cytoskeleton following exposure to hydrogen peroxide (H(2)O(2)) and pretreatment with KGF. We also determined the role of the actin-myosin contractile mechanism in the process by quantifying the relative amount of myosin heavy chain (MHC) associated with the cytoskeleton. While the transepithelial resistance (TER) of a monolayer of airway epithelial cells (Calu-3) decreased after 2 h of continuous exposure to 0.5 mM H(2)O(2), actin and MHC, both dissociated from the cytoskeleton within 15 min of H(2)O(2) exposure. The TER of the monolayers remained depressed although both actin and myosin returned to the cytoskeleton by 4 h after the initiation of H(2)O(2) exposure. Filamentous actin (f-actin) staining suggested that the re-associating actin took the form of short fibers associated with cortical actin rather than long stress fibers. Furthermore, pretreatment with KGF prevented the loss of actin and MHC from the actin cytoskeleton but did not prevent the decrease in TER. These studies suggest that actin disassembly from the cytoskeleton is important in the loss of barrier function, but that it is not the overall amount of actin that is associated with the cytoskeleton that is important, rather it is the contribution this actin makes to the architectural cohesiveness of the cell that contributes to the barrier function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.10451DOI Listing

Publication Analysis

Top Keywords

barrier function
16
actin cytoskeleton
16
actin
15
airway epithelial
12
epithelial cells
12
associated cytoskeleton
12
cytoskeleton
10
hydrogen peroxide
8
loss barrier
8
relative amount
8

Similar Publications

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Background: 2022 survey data showed 29% of Veterans utilized Veterans Affairs (VA) paid health care at a non-VA facility, 6% higher than in 2021. Despite an increase in the number of Veterans accessing care in the community via the MISSION Act Community Care Program (CCP), there is limited information on the quality of mental health care delivered to Veterans in these settings. Further, Veterans report barriers to quality care, including poor communication between CCP and VA providers, which can result in negative patient outcomes.

View Article and Find Full Text PDF

The forward design of biosensors that implement Boolean logic to improve detection precision primarily relies on programming genetic components to control transcriptional responses. However, cell- and gene-free nanomaterials programmed with logical functions may present lower barriers for clinical translation. Here we report the design of activity-based nanosensors that implement AND-gate logic without genetic parts via bi-labile cyclic peptides.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!