[Plasma lipid profile and lipid peroxidation in overweight or obese children and adolescents].

J Pediatr (Rio J)

Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.

Published: August 2004

Objective: To study the plasma lipid profile and lipid peroxidation in overweight or obese children and adolescents receiving care at the pediatric endocrinology clinic in HOSPED/UFRN, a university hospital.

Methods: Three groups were studied: overweight (n = 15), obese (n = 30) and control (n = 21) children and adolescents. To evaluate plasma lipid profile, total cholesterol, LDL-cholesterol, HDL-cholesterol and triglyceride levels were measured. Lipid peroxidation was determined by measuring malondialdehyde concentration. Data were analyzed using Student's t test, Tukey test, ANOVA and Pearson's correlation.

Results: Altered levels of total and LDL-cholesterol were observed mainly in overweight or obese males. HDL-cholesterol was borderline in the overweight and obese groups of both sexes. Obese females had the highest levels of triglycerides. Increased plasma lipid peroxidation was observed mainly in obese males.

Conclusion: In the present population, the greatest alterations in lipid profile were observed in obese and overweight males. Plasma lipid peroxidation was more evident in obese males and females.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lipid peroxidation
20
overweight obese
20
lipid profile
16
plasma lipid
16
obese
9
lipid
8
profile lipid
8
peroxidation overweight
8
obese children
8
children adolescents
8

Similar Publications

The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.

View Article and Find Full Text PDF

Axonal fusion represents an efficient way to recover function after nerve injury. However, how axonal fusion is induced and regulated remains largely unknown. We discover that ferroptosis signaling can promote axonal fusion and functional recovery in C.

View Article and Find Full Text PDF

Exploring ferroptosis and miRNAs: implications for cancer modulation and therapy.

Mol Cell Biochem

January 2025

Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.

Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.

View Article and Find Full Text PDF

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

Unlabelled: As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!