Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP.

Proc Natl Acad Sci U S A

Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.

Published: March 2004

Initiation of DNA replication in eukaryotes, archea, and eubacteria requires interaction of structurally conserved ATP-binding initiator proteins and origin DNA to mediate assembly of replisomes. However, the specific requirement for ATP in the early steps of initiation remains unclear. This is true even for the well studied Escherichia coli replication origin, oriC, where the ATP form of initiator DnaA is necessary and sufficient for initial DNA strand separation, but the five DnaA-binding sites (R boxes) with consensus sequence 5'TGTGNAT/AAA bind both active ATP-DnaA and inactive ADP-DnaA with equal affinity. By using dimethyl sulfate footprinting, we recently identified two initiator-binding sites, I2 and I3, with sequence 5'TG/TGGATCAG/A. We now show that sites I2 and I3 preferentially bind DnaA-ATP and are required for origin unwinding. Guanine at position 3 determines DnaA-ATP preference, and changing this base to thymine at both I sites allows DnaA-ADP to bind and open oriC, although DNA strand separation is not precisely localized in the AT-rich region. These observations indicate that specific initiator binding sites within a replication origin can be important determinants of an ATP-dependent molecular switch regulating DNA strand separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC365702PMC
http://dx.doi.org/10.1073/pnas.0400340101DOI Listing

Publication Analysis

Top Keywords

dna strand
16
replication origin
12
strand separation
12
binding sites
8
escherichia coli
8
coli replication
8
sites
6
dna
6
origin
5
discriminatory binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!