Endocannabinoids modulate N-type calcium channels and G-protein-coupled inwardly rectifying potassium channels via CB1 cannabinoid receptors heterologously expressed in mammalian neurons.

Mol Pharmacol

Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-8815, USA.

Published: March 2004

Endocannabinoids may serve as retrograde messengers to inhibit neurotransmitter release during depolarization-induced suppression of inhibition (DSI) or excitation (DSE). We therefore tested whether endocannabinoids inhibit N-type voltage-dependent Ca2+ channels by activating G(i/o)-protein-coupled CB1 cannabinoid receptors (CB1R)--a possible mechanism underlying DSI/DSE. Three putative endocannabinoids [2-arachidonylglycerol (2-AG), 2-arachidonyl glycerol ether (2-AGE), and anandamide (AEA)] and the cannabimimetic aminoalkylindole WIN 55,212-2 (WIN) inhibited whole-cell Ca2+ currents in rat sympathetic neurons previously injected with cDNA encoding a human CB1R. Agonist-mediated Ca2+ current inhibition was blocked by a selective CB1R antagonist [SR141716A, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride] and pertussis toxin (PTX) pretreatment. The rank order of potency was WIN (IC50=2 nM)>2-AGE (350 nM) approximately 2-AG (480 nM)>AEA (approximately 3 microM), with each agonist displaying similar efficacy (approximately 50% maximal inhibition). Increasing CB1R expression level significantly enhanced AEA potency. AEA (10 microM) also inhibited Ca2+ channels in a voltage-independent, CB1R-independent, and PTX-insensitive manner, whereas 2-AG and 2-AGE were devoid of this activity. All three endocannabinoids activated G-protein-coupled inwardly rectifying potassium (GIRK) channels, GIRK1/4, heterologously expressed in sympathetic neurons. These results suggest a mechanism by which endocannibinoids might influence presynaptic function.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.65.3.665DOI Listing

Publication Analysis

Top Keywords

g-protein-coupled inwardly
8
inwardly rectifying
8
rectifying potassium
8
cb1 cannabinoid
8
cannabinoid receptors
8
heterologously expressed
8
ca2+ channels
8
sympathetic neurons
8
endocannabinoids
5
channels
5

Similar Publications

Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.

View Article and Find Full Text PDF

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Polymorphisms of Gene and Their Correlation with Immune Indicators in Yaks ().

Biomolecules

December 2024

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Yaks are crucial to local herders' economy and agriculture. However, several diseases pose a significant threat to the health of yaks and cause substantial economic losses for herders. Therefore, studying the immune indicators and breeding of yaks has become an important task.

View Article and Find Full Text PDF
Article Synopsis
  • Kir5.1, when paired with Kir4.2, forms a crucial potassium channel (heterotetramer) in the basolateral membrane of mouse proximal tubules, affecting K+ conductance.
  • Immunofluorescence and immunoblotting show Kir4.2 is found exclusively in proximal tubules, while Kir5.1 is present in both proximal and distal nephrons; however, the absence of Kir5.1 reduces Kir4.2 levels and affects membrane staining.
  • Patch-clamp recordings reveal that Kir5.1-knockout mice lack the 50-pS K channel that is present in wild-type mice, leading to a less negative membrane potential in the proximal tubules, indicating the importance
View Article and Find Full Text PDF

Higher-order transient structures and the principle of dynamic connectivity in membrane signaling.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.

We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!