Renal transplant rejection is caused by a lymphocyte-rich inflammatory infiltrate that attacks cortical tubules and endothelial cells. Immunosuppressive therapy reduces the number of infiltrating cells; however, their exit routes are not known. Here a >50-fold increase of lymphatic vessel density over normal kidneys in grafts with nodular mononuclear infiltrates is demonstrated by immunohistochemistry on human renal transplant biopsies using antibodies to the lymphatic endothelial marker protein podoplanin. Nodular infiltrates are constantly associated with newly formed, Ki-67-expressing lymphatic vessels and contain the entire repertoire of T and B lymphocytes to provide specific cellular and humoral alloantigenic immune responses, including Ki-67(+) CD4(+) and CD8(+) T lymphocytes, S100(+) dendritic cells, and Ki-67(+)CD20(+) B lymphocytes and lambda- and kappa-chain-expressing plasmacytoid cells. Numerous chemokine receptor CCR7(+) cells within the nodular infiltrates seemed to be attracted by secondary lymphatic chemokine (SLC/CCL21) that is produced and released by lymphatic endothelial cells in a complex with podoplanin. From these results, it is speculated that lymphatic neoangiogenesis not only contributes to the export of the rejection infiltrate but also is involved in the maintenance of a potentially detrimental alloreactive immune response in renal transplants and provides a novel therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.asn.0000113316.52371.2e | DOI Listing |
Cells
November 2024
Division of Hematology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Lymphoma growth, progression, and dissemination require tumor cell interaction with supporting vessels and are facilitated through tumor-promoted angiogenesis, lymphangiogenesis, and/or lymphoma vessel co-option. Vessel co-option has been shown to be responsible for tumor initiation, metastasis, and resistance to anti-angiogenic treatment but is largely uncharacterized in the setting of lymphoma. We developed an in vitro model to study lymphoma-vessel interactions and found that mantle cell lymphoma (MCL) cells co-cultured on Matrigel with human umbilical vein (HUVEC) or human lymphatic (HLEC) endothelial cells migrate to and anneal with newly formed capillary-like (CLS) or lymphatic-like (LLS) structures, consistent with lymphoma-vessel co-option.
View Article and Find Full Text PDFPeerJ
October 2024
Pathology, Shihezi University School of Medicine/The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
Am J Pathol
October 2024
Molecular Endocrinology Group and the Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina. Electronic address:
Oncoimmunology
September 2024
Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia.
Clin Exp Med
September 2024
Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
As one of the factors regulating tumour angiogenesis, angiopoietin-4 (ANGPT4), which plays an important role in promoting tumour proliferation, survival, expansion and angiogenesis, is highly expressed in some tumours, such as lung adenocarcinoma, glioblastoma and ovarian cancer. This may be related to the fact that ANGPT4 affects the blood vessels and lymphatic system of the tumour. Specifically, ANGPT4 could play an effective role in promoting cancer by affecting the tyrosine kinase receptor TIE2, ERK1/2 and PI3K/AKT signalling pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!