Host defense against Mycobacterium tuberculosis requires the cytokine IFN-gamma and IFN regulatory factor 1 (IRF-1), a transcription factor that is induced to high levels by IFN-gamma. Therefore, we chose to study regulation of IRF-1 expression as a model for effects of M. tuberculosis on response to IFN-gamma. We found that IRF-1 mRNA abundance increased far more than transcription rate in human monocytic THP-1 cells stimulated by IFN-gamma, but less than transcription rate in cells infected by M. tuberculosis. IFN-gamma stimulation of infected cells caused a synergistic increase in IRF-1 transcription, yet IRF-1 mRNA abundance was similar in uninfected and infected cells stimulated by IFN-gamma, as was the IRF-1 protein level. Comparable infection by Mycobacterium bovis bacillus Calmette-Guérin failed to induce IRF-1 expression and had no effect on the response to IFN-gamma. We also examined the kinetics of transcription, the mRNA t(1/2), and the distribution of IRF-1 transcripts among total nuclear RNA, poly(A) nuclear RNA, and poly(A) cytoplasmic RNA pools in cells that were infected by M. tuberculosis and/or stimulated by IFN-gamma. Our data suggest that infection by M. tuberculosis inhibits RNA export from the nucleus. Moreover, the results indicate that regulated entry of nascent transcripts into the pool of total nuclear RNA affects IRF-1 expression and that this process is stimulated by IFN-gamma and inhibited by M. tuberculosis. The ability of infection by M. tuberculosis to limit the increase in IRF-1 mRNA expression that typically follows transcriptional synergism may contribute to the pathogenicity of M. tuberculosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.172.5.2935 | DOI Listing |
Mediators Inflamm
January 2025
Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
L. fruits and leaf extracts have a broad range of immunomodulatory, anti-inflammatory, and antioxidant effects; however, their effects on cardiac protection have not been investigated. The study aims to test the biological activity of L.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China, 250117. Electronic address:
Successful immunotherapy requires systemic activation of the immune system. Radio-immunotherapy has a synergistic effect, enhancing this activation, but still faces many challenges, requiring methods to further improve its efficacy. Interleukin 15 (IL-15) is considered a potential therapeutic agent because of its broad immunoregulatory activity.
View Article and Find Full Text PDFFront Immunol
January 2025
Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.
Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.
View Article and Find Full Text PDFFront Immunol
January 2025
Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy.
Background: Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to (Mtb) in patients with TBI and TB disease.
Methods: We enrolled TBI and TB patients with and without IMID.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!