In contrast to the well known cytotoxic effects of tumor necrosis factor (TNF) alpha in many mammary cancer cells, we have found that TNF stimulates the proliferation and motility of human mammary epithelial cells (HMECs). Since the response of HMECs to TNF is similar to effects mediated by epidermal growth factor receptor (EGFR) activation, we explored the potential role of cross-talk through the EGFR signaling pathways in mediating cellular responses to TNF. Using a microarray enzyme-linked immunoassay, we found that exposure to TNF stimulated the dose-dependent shedding of the EGFR ligand transforming growth factor alpha (TGFalpha). Both proliferation and motility of HMECs induced by TNF was prevented either by inhibiting membrane protein shedding with a metalloprotease inhibitor, by blocking epidermal growth factor receptor (EGFR) kinase activity, or by limiting ligand-receptor interactions with an antagonistic anti-EGFR antibody. EGFR activity was also necessary for TNF-induced release of matrix metalloprotease-9, thought to be an essential regulator of mammary cell migration. The cellular response to TNF was associated with a biphasic temporal pattern of extracellular signal-regulated kinase (ERK) phosphorylation, which was EGFR-dependent and modulated by inhibition of metalloprotease-mediated shedding. Significantly, the late phase of ERK phosphorylation, detectable within 4 h after exposure, was blocked by the metalloprotease inhibitor batimastat, indicating that autocrine signaling through ligand shedding was responsible for this secondary wave of ERK activity. Our results indicate a novel and important role for metalloprotease activation and EGFR transmodulation in mediating the cellular response to TNF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M310874200 | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.
Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Adhiparasakthi Dental College and Hospital, Melmaruvathur, India.
Background: Angiogenesis, the formation of new blood vessels from preexisting ones via capillary sprouting, is a crucial process in tumor growth and metastasis. As a tumor's angiogenic capacity increases, its microvasculature, measured by micro vessel density (MVD), also increases. This study aims to evaluate the expression of Vascular Endothelial Growth Factor (VEGF) and CD34 in oral epithelial dysplasia and oral squamous cell carcinoma through immunohistochemical methods.
View Article and Find Full Text PDFDrugs
January 2025
Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
Inavolisib (Itovebi) is an orally administered, phosphatidylinositol-3-kinase alpha (PI3Kα) inhibitor being developed by Genentech, a member of the Roche group, for the treatment of solid tumours. On 10 October 2024, inavolisib received its first approval in the USA in combination with palbociclib and fulvestrant for the treatment of adults with endocrine-resistant, PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor 2 (HER2)-negative, locally advanced or metastatic breast cancer, as detected by an FDA-approved test, following recurrence on or after completing adjuvant endocrine therapy. In the EU and other countries worldwide, regulatory review of inavolisib is currently underway.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India.
Quinoline is a highly privileged scaffold with significant pharmacological potential. Introducing a carbonyl group into the quinoline ring generates a quinolone ring, which exhibits promising biological properties. Incorporating a carboxamide linkage at different positions within the quinoline and quinolone frameworks has proven an effective strategy for enhancing pharmacological properties, particularly anticancer potency.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!