NK cells monitor expression of MHC class I by inhibitory receptors and preferentially kill cells that lose or down-regulate MHC class I expression. One possible mechanism by which tumor cells evade NK cell killing is continued expression of appropriate MHC class I ligands to engage inhibitory receptors on NK cells. We show here that small-mol.-wt blockers against the mouse inhibitory NK cell receptor Ly49A enhance NK cell killing of such tumor cells. We identified Ly49A-binding peptides by selecting phages with the capacity to bind recombinant Ly49A expressed in Escherichia coli from a phage display random peptide library. The Ly49A-binding peptides could also bind Ly49A expressed on mammalian cells. Importantly, the Ly49A-binding peptides blocked Ly49A recognition of its MHC class I ligands H-2Dd and H-2Dk. Moreover, blockade of Ly49A by the peptides enhanced cytotoxicity of Ly49A+ NK cells towards H-2Dd-expressing tumor cells. These results clearly indicate effectiveness of small-mol.-wt blockers of inhibitory NK cell receptors in enhancing NK cell-mediated killing of tumor cells that are otherwise resistant because of MHC class I expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/intimm/dxh021 | DOI Listing |
ACS Nano
January 2025
Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, United States.
The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
January 2025
Department of Neurosurgery, General Hospital Bamberg, Bamberg, Germany.
Background: Optic nerve schwannomas are an extremely rare pathology in neurosurgery. Their origin is rather debatable given the structure of the optic nerve, which does not typically have Schwann cells therein. However, a number of clinical cases of optic nerve tumors classified as schwannomas have been described in the literature.
View Article and Find Full Text PDFBlood
January 2025
University of Chicago, Chicago, Illinois, United States.
Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.
View Article and Find Full Text PDFChem Biodivers
January 2025
Faculty of Chemistry and Life Sciences, Department of Chemistry, Government College University Lahore, Lahore, Pakistan.
Macrophages are heterogeneous cells that are the mediators of tissue homeostasis. These immune cells originated from monocytes and are classified into two basic categories, M1 and M2 macrophages. M1 macrophages exhibit anti-tumorous inflammatory reactions due to the behavior of phagocytosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!