Effects of substrate characteristics on bone cell response to the mechanical environment.

Med Biol Eng Comput

Centre for Science & Technology in Medicine, School of Medicine, Keele University/North Staffordshire Hospital, Stoke-on-Trent, UK.

Published: January 2004

The effect of substrate characteristics on primary human bone cell response to mechanical loading was investigated in this study. The substrates comprised organic and inorganic materials with a range of hydrophilic and hydrophobic features. Substrate surface topography varied from smooth to particulate to porous. It was found that hydrophilic substrates such as borosilicate glass facilitated bone cell adhesion, in contrast to hydrophobic substrates such as poly(L-lactic acid), in which clumps of cells grew unevenly across the substrate surface. All primary bone cells cultured in the various collagen-coated substrates were responsive to mechanical stimulation. The study showed that, at a low strain level of 1000 microstrain, mechanical stimulation enhanced bone cell differentiation rather than proliferation. Coating the substrates with collagen type I enhanced cell adhesion and promoted an elongated cell morphology, indicating that the presence of specific binding sites on a substrate may be more important than its hydrophilic properties, regardless of the substrate topography.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02351007DOI Listing

Publication Analysis

Top Keywords

bone cell
16
substrate characteristics
8
cell response
8
response mechanical
8
substrate surface
8
cell adhesion
8
mechanical stimulation
8
cell
6
bone
5
substrate
5

Similar Publications

Background: Manual extraction of real-world clinical data for research can be time-consuming and prone to error. We assessed the feasibility of using natural language processing (NLP), an AI technique, to automate data extraction for patients with advanced lung cancer (aLC). We assessed the external validity of our NLP-extracted data by comparing our findings to those reported in the literature.

View Article and Find Full Text PDF

Context: Congenital hypothyroidism (CH) is the most common neonatal endocrine disorder and is chiefly caused by thyroid dysgenesis (CHTD). The inheritance mode of the disease remains complex.

Objectives: Gain insight into the inheritance mode of CHTD.

View Article and Find Full Text PDF

Cellular therapy is a promising treatment option for Peripheral Arterial Disease (PAD). Different cell types can be used to regenerate and repair tissues affected by PAD. Many studies have proposed the use of stem cells, such as mesenchymal stem cells, or even mononuclear cells isolated from peripheral blood or bone marrow, to treat PAD.

View Article and Find Full Text PDF

A long-ignored skeletal tissue filled with oil.

Science

January 2025

Program in Craniofacial Biology, Department of Orofacial Sciences, Department of Anatomy, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.

Lipid-rich cartilage points to nonmetabolic functions of lipid vacuoles in mammals.

View Article and Find Full Text PDF

INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!