Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform, regarding exploration, habituation, seizure susceptibility and spatial learning. The phenotype in these mice was associated with histological adaptations in the hippocampal mossy fiber field size. Here, mice lacking the ubiquitous mitochondrial creatine kinase isoform (UbCKmit-/- mice) showed, when subjected to a similar battery of behavioral tasks, diminished open field habituation and slower spatial learning acquisition in the Morris water maze task, but normal sensory or motor functions. A reduced acoustic startle response, higher threshold, and lack of prepulse inhibition were observed in UbCKmit-/- mice, suggesting that the unconditioned reflexive responsiveness is not optimal. Our findings suggest a role for mitochondrial CK-mediated high-energy phosphoryl transfer in synaptic signalling in the acoustic signal response network and hippocampal-dependent learning circuitry of brain. Finally, we demonstrate that UbCKmit has a widespread occurrence in the cell soma of neuronal nuclei along the rostro-caudal axis of the brain, i.e. cortex, midbrain, hindbrain, cerebellum and brainstem, similar to the occurrence of B-CK. This may explain the similarity of phenotypes in mice lacking B-CK or UbCKmit. We predict that the remaining functional intactness of the cytosolic B-CK reaction and perhaps the compensatory role of other phosphoryl transfer systems are sufficient to sustain the energy requirements for basic sensory, motor and physiological activities in UbCKmit-/- mice.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:mcbi.0000009877.90129.e3DOI Listing

Publication Analysis

Top Keywords

mice lacking
16
creatine kinase
12
spatial learning
12
ubckmit-/- mice
12
mice
8
slower spatial
8
learning acquisition
8
exploration habituation
8
reduced acoustic
8
acoustic startle
8

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

Effects of minipuberty disruption on the expression of sexual behavior in female mice.

Sci Rep

December 2024

Sorbonne Université, CNRS UMR8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France.

Sex steroids influence early organization of neural structures involved in expression of sexual behavior. A critical perinatal period during which testosterone surges occur has been identified in male rodents. Data are lacking for females, whose ovarian activity starts later in the postnatal period.

View Article and Find Full Text PDF

Objective:  Septic acute lung injury (ALI) is a common complication of sepsis with high morbidity and mortality but lacks specific treatment. This study aimed to elucidate the role of circular RNA TLK1 (circTLK1) in neonatal septic ALI.

Study Design:  Murine cecal slurry was used to induce neonatal sepsis-induced ALI model in vivo.

View Article and Find Full Text PDF

Tertiary amine modification enables triterpene nanoparticles to target the mitochondria and treat glioblastoma via pyroptosis induction.

Biomaterials

December 2024

Department of Neurosurgery, Yale University, New Haven, CT, 06511, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, USA. Electronic address:

Glioblastoma (GBM), the most common primary brain tumor, lacks effective treatments. Emerging evidence suggests mitochondria as a promising therapeutic target, albeit successfully targeting represents a major challenge. Recently, we discovered a group of triterpenes that can self-assemble into nanoparticles (NPs) for cancer treatment.

View Article and Find Full Text PDF

Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated and exploration using isolated pancreatic islets of C57BL/6J mice.

J Recept Signal Transduct Res

December 2024

Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.

Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!