Incidental sounds produced by Phyllophaga crinita (Burmeister) and Cyclocephala lurida (Bland) (Coleoptera: Scarabaeidae) white grubs were monitored with single- and multiple-sensor acoustic detection systems in turf fields and golf course fairways in Texas. The maximum detection range of an individual acoustic sensor was measured in a greenhouse as approximately the area enclosed in a 26.5-cm-diameter perimeter (552 cm2). A single-sensor acoustic system was used to rate the likelihood of white grub infestation at monitored sites, and a four-sensor array was used to count the numbers of white grubs at sites where infestations were identified. White grub population densities were acoustically estimated by dividing the estimated numbers of white grubs by the area of the detection range. For comparisons with acoustic monitoring methods, infestations were assessed also by examining 10-cm-diameter soil cores collected with a standard golf cup-cutter. Both acoustic and cup-cutter assessments of infestation and estimates of white grub population densities were verified by excavation and sifting of the soil around the sensors after each site was monitored. The single-sensor acoustic method was more successful in assessing infestations at a recording site than was the cup-cutter method, possibly because the detection range was larger than the area of the soil core. White grubs were recovered from >90% of monitored sites rated at medium or high likelihood of infestation. Infestations were successfully identified at 23 of the 24 sites where white grubs were recovered at densities >50/m2, the threshold for economic damage. The four-sensor array yielded the most accurate estimates of the numbers of white grubs in the detection range, enabling reliable, nondestructive estimation of white grub population densities. However, tests with the array took longer and were more difficult to perform than tests with the single sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/0022-0493-96.6.1770 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!