Dihydroflavonol-4-reductase (DFR; EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Two DFR cDNA clones (MtDFR1 and MtDFR2) were isolated from the model legume Medicago truncatula cv Jemalong. Both clones were functionally expressed in Escherichia coli, confirming that both encode active DFR proteins that readily reduce taxifolin (dihydroquercetin) to leucocyanidin. M. truncatula leaf anthocyanins were shown to be cyanidin-glucoside derivatives, and the seed coat proanthocyanidins are known catechin and epicatechin derivatives, all biosynthesized from leucocyanidin. Despite high amino acid similarity (79% identical), the recombinant DFR proteins exhibited differing pH and temperature profiles and differing relative substrate preferences. Although no pelargonidin derivatives were identified in M. truncatula, MtDFR1 readily reduced dihydrokaempferol, consistent with the presence of an asparagine residue at a location known to determine substrate specificity in other DFRs, whereas MtDFR2 contained an aspartate residue at the same site and was only marginally active on dihydrokaempferol. Both recombinant DFR proteins very efficiently reduced 5-deoxydihydroflavonol substrates fustin and dihydrorobinetin, substances not previously reported as constituents of M. truncatula. Transcript accumulation for both genes was highest in young seeds and flowers, consistent with accumulation of condensed tannins and leucoanthocyanidins in these tissues. MtDFR1 transcript levels in developing leaves closely paralleled leaf anthocyanin accumulation. Overexpression of MtDFR1 in transgenic tobacco (Nicotiana tabacum) resulted in visible increases in anthocyanin accumulation in flowers, whereas MtDFR2 did not. The data reveal unexpected properties and differences in two DFR proteins from a single species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC389921 | PMC |
http://dx.doi.org/10.1104/pp.103.030221 | DOI Listing |
Hortic Res
January 2025
Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350003, China.
Resveratrol is an important phytoalexin that adapts to and responds to stressful conditions and plays various roles in health and medical therapies. However, it is only found in a limited number of plant species in low concentrations, which hinders its development and utilization. Chalcone synthase (CHS) and stilbene synthase (STS) catalyze the same substrates to produce flavonoids and resveratrol, respectively.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Forestry and Grassland, Jilin Agricultural University, Changchun 130118, China.
The color variation of the leaves in autumn is a significant ornamental feature of Bunge, especially when the leaves gradually become redder. Many studies focused on leaf color changes; however, less research has been conducted on the mechanism by which 's autumn leaves turn red. Red, middle and green leaves of were used as the study materials to evaluate their flavonoid-related metabolites and infer gene and metabolite expression patterns in conjunction with transcriptome expression.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Passion fruit is one of the most famous fruit crops in tropical and subtropical regions due to its high edible, medicinal, and ornamental value. Flavonoids, a class of plant secondary metabolites, have important health-related roles. In this study, a total of 151 flavonoid metabolites were identified, of which 25 key metabolites may be the main contributors to the purple phenotype.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!