Nipah virus (NiV) and Hendra virus (HeV) are novel zoonotic members of the Paramyxoviridae family and are the prototypes for a newly designated genus, Genus Henipavirus. Recent studies have shown that paramyxovirus might adopt a similar mechanism of virus fusion-entry. Under this mechanism, the two highly conserved heptad repeat (HR) regions, HR1 and HR2, in the fusion (F) protein, seem to show characteristic structure in the fusion core: the formation of a 6-helix coiled-coil bundle. The three HR1s form the alpha-helix coiled-coil surrounded by three HR2s. In this study, the two HR regions of NiV or HeV were expressed in an Escherichia coli system as a single chain and the results do show that HR1 and HR2 interact with each other in both NiV and HeV and form typical 6-helix coiled-coil bundles. This provides the molecular basis of HR2 inhibition to NiV and HeV fusion as observed in an earlier report.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2004.01.115 | DOI Listing |
Clin Microbiol Rev
December 2024
Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN).
View Article and Find Full Text PDFmBio
December 2024
Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
Unlabelled: A novel Hendra virus (HeV) genotype (HeV genotype 2 [HeV-g2]) was recently isolated from a deceased horse, revealing high-sequence conservation and antigenic similarities with the prototypic strain, HeV-g1. As the receptor-binding (G) and fusion (F) glycoproteins of HeV are essential for mediating viral entry, functional characterization of emerging HeV genotypic variants is key to understanding viral entry mechanisms and broader virus-host co-evolution. We first confirmed that HeV-g2 and HeV-g1 glycoproteins share a close phylogenetic relationship, underscoring HeV-g2's relevance to global health.
View Article and Find Full Text PDFNPJ Vaccines
December 2024
Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
The limited but recurrent outbreaks of the zoonotic Nipah virus (NiV) infection in humans, its high fatality rate, and the potential virus transmission from human to human make NiV a concerning threat with pandemic potential. There are no licensed vaccines to prevent infection and disease. A recombinant Hendra virus soluble G glycoprotein vaccine (HeV-sG-V) candidate was recently tested in a Phase I clinical trial.
View Article and Find Full Text PDFBats are known to host zoonotic viruses, including henipaviruses that cause high fatality rates in humans (Nipah virus and Hendra virus). However, the determinants of zoonotic spillover are generally unknown, as the ecological and demographic drivers of viral circulation in bats are difficult to ascertain without longitudinal data. Here we analyse serological data collected from African straw-coloured fruit bats () in Ghana over the course of 2 years and across four sites, comprising three wild roosts and one captive colony.
View Article and Find Full Text PDFViruses
August 2024
Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!