A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Newly expressed proteins of mouse embryonic fibroblasts irradiated to be inactive. | LitMetric

Newly expressed proteins of mouse embryonic fibroblasts irradiated to be inactive.

Biochem Biophys Res Commun

Institute of Reproduction and Stem Cell Engineering, Central South University, Stem Cell Engineering Technology Research Center of Hunan Province, Changsha, Hunan Province, PR China.

Published: March 2004

It has been found that post-radiation mouse embryonic fibroblasts can well maintain the pluripotency in human embryonic stem cells. However, the molecular mechanism remains unclear. In the present study, the new protein expression profile of post-radiation mouse embryonic fibroblasts was analyzed by immobilized pH gradient 2-dimensional polyacrylamide gel electrophoresis. Image analysis following silver staining revealed (969+/-57) vs. (1085+/-107) spots from post-radiation mouse embryonic fibroblasts and pre-radiation ones, respectively. Some newly expressed proteins, which were only abundantly present after irradiation, were subjected to peptide mass fingerprint analysis and identified using MALDI-TOF-MS, SWISS-PROT database, and RT-PCR. Several of those proteins were preliminarily identified to participate in cytokine secretion, cell signal transduction, transcriptional regulation, and apoptosis, etc., which suggested that inactive post-radiation mouse embryonic fibroblasts expressed some new proteins that may underlie the molecular mechanisms to maintain the pluripotency in human embryonic stem cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.01.089DOI Listing

Publication Analysis

Top Keywords

mouse embryonic
20
embryonic fibroblasts
20
post-radiation mouse
16
expressed proteins
12
newly expressed
8
inactive post-radiation
8
maintain pluripotency
8
pluripotency human
8
human embryonic
8
embryonic stem
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!