Two major UV-induced transformation products of guanosine (Guo) in oxygen-free aqueous solution were isolated and characterized using reverse-phase HPLC-ESI-MS and UV absorption spectrophotometric techniques. These products were identified as two different sugar isomers of 2,6-diamino-4-hydroxy-5-formamidopyrimidine ribonucleosides, FapyGuo. A formation quantum yield of the order of 10(-3) for these products was obtained at a 75 microM concentration of Guo, while an increase in the ground state concentration of Guo from 10(-5) to 10(-4) M decreased their formation yield by a factor of ten. The formation of FapydGuo was also observed in the 254 nm photolysis of 2'-deoxyguanosine. In addition, the formation FapyGua was identified in the UV photolysis of all the guanine derivatives investigated. A formation quantum yield of the order of 10(-4) was obtained for the latter product, except in the photolysis of Gua in which a higher formation yield (10(-3)) was determined. These results suggest that hydration of the radical cation of guanine, followed by opening of the imidazole ring to form Fapy products, is one of the main low-intensity UV radiation-induced photo-transformation pathway of the guanine derivatives in oxygen-free aqueous solutions. Furthermore, the formation of the Fapy products and base release occurs through a similar photo-transformation pathways using a high-intensity UV radiation source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2003.11.006 | DOI Listing |
Commun Biol
January 2025
Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.
View Article and Find Full Text PDFCell Death Dis
January 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Clinical Immunology, Nanjing Kingmed Clinical Laboratory, Nanjing, Jiangsu, China.
Rationale: Mass vaccination, low cost of immunoglobulins, and new drugs led to the emergence of new, unusual patterns of hepatitis B serum markers. This study reported a rare case of hepatitis B with all 5 positive serum markers, including HBsAg, HBsAb, HBeAg, HBeAb, and HBcAb.
Patient Concerns: A 30-year-old female patient was admitted due to abnormal liver function.
J Am Heart Assoc
January 2025
John P. Hussman Institute for Human Genomics, University of Miami Miami FL USA.
Background: Carotid intima-media thickness (IMT) is a measure of atherosclerosis and a predictor of vascular diseases. Traditional vascular risk factors and genetic variants do not completely explain the variation in carotid IMT. We sought to identify epigenetic factors that may contribute to the remaining carotid IMT variability.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Centre for Chemical Biology, Department of Chemistry, Institute for Nucleic Acids, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
Bracken fern ( sp.) is a viable and vigorous plant with invasive potential, ingestion of which causes chronic illness and cancers in farm animals. Bracken is a suspected human carcinogen, and exposure can result from ingestion of bracken-contaminated water, dairy products, or meat derived from livestock grazing on bracken fern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!