Background: To investigate in a group of short children born small for gestational age (SGA), the effects of 3 years of GH treatment vs. no treatment on bone age (BA), height and bone mineral density (BMD). Also, to evaluate the influence of the severity of growth retardation at start and the GH dose on the gain in height.

Patients And Methods: The study design was an open-labelled, controlled multicentre GH study for 3 years. Non-GH-deficient (GHD) children (n = 87) were randomized to either a GH group (n = 61) or an untreated control group (n = 26). In addition, 12 SGA children had GHD (GHD group) and were treated in parallel. Both the GH and the GHD group were treated with a GH dose of 33 microg/kg/day. BMD was evaluated using dual energy X-ray absorptiometry (DEXA). In addition, data of our first GH trial in which short SGA children were treated with a GH dose of 66 microg/kg/day (n = 24) were used for comparison of height gain.

Results: In contrast to the control group, the GH group showed a significant increase in height (P < 0.001), as did the parallel GHD group. Bone maturation [delta bone age (BA)/delta calendar age (CA)] increased significantly during the first 2 years of GH treatment but slowed-down thereafter. The 3-year deltaBA/deltaCA ratio correlated significantly with the gain in height (r = 0.6, P < 0.001). At start, mean BMD SDS and mean BMAD SDS were significantly lower than zero. During GH treatment both increased impressively (P < 0.001). The gain in height of children with severe short stature at start (< or = -3.00 SDS), did not differ between those receiving either a GH dose of 33 or 66 microg/kg/day.

Conclusion: Three years of GH treatment in short children born SGA results in a normalization of height during childhood. Also, bone maturation increased proportionately to the height gain. At start, mean values of BMD and BMAD were significantly reduced but normalized during GH treatment. We did not find an indication to treat very short SGA children (H SDS < or = -3.00) with a higher GH dose. We rather suggest to start GH treatment at an early age in order to achieve a normal height before puberty starts.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2265.2003.01905.xDOI Listing

Publication Analysis

Top Keywords

bone maturation
12
short children
12
children born
12
years treatment
12
sga children
12
ghd group
12
treatment
8
treatment bone
8
bone mineral
8
mineral density
8

Similar Publications

Comparing the Palmar Radiocarpal Artery Vascularized Bone Graft with Alternatives for Unstable Scaphoid Nonunions: A Retrospective Analysis.

J Hand Surg Am

January 2025

The Ottawa Hospital, Ottawa, ON, Canada; Division of Orthopaedic Surgery, The Ottawa Hospital Ottawa, ON, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. Electronic address:

Purpose: We compared the radiographic union and magnitude of humpback deformity correction when using different vascularized bone grafts (VBGs) and nonvascularized bone grafts (NVBGs) in the treatment of unstable scaphoid nonunions (USNUs).

Methods: This was a retrospective radiographic review of 93 patients with an USNU treated between 2013 and 2022 at a single center by a single surgeon. Inclusion criteria included skeletally mature patients with radiographic evidence of an USNU resulting from failure of either nonsurgical or operative treatment.

View Article and Find Full Text PDF

Muscle-Guided Mapping of the Post-Traumatic Heterotopic Ossification of the Elbow: A Novel CT-Based Study.

J Shoulder Elbow Surg

January 2025

Department of Orthopedic surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea. Electronic address:

Background: Heterotopic ossification (HO) involves abnormal bone formation in soft tissues near joints, commonly occurring after elbow trauma or surgery, leading to pain and functional limitations. Previous studies have primarily characterized HO distribution based on bony landmarks, lacking a detailed investigation into the characteristics of its distribution in periarticular soft tissue in post-traumatic elbows. This study aimed to (1) develop a muscle-guided classification system using computed tomography (CT) to map HO relative to elbow muscle-tendon units and (2) investigate correlations between HO location and severity.

View Article and Find Full Text PDF

ANXA2 promotes chondrocyte differentiation and fracture healing by regulating the phosphorylation of STAT3 and PI3K/AKT signaling pathways.

Cell Signal

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:

Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.

View Article and Find Full Text PDF

Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.

Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.

View Article and Find Full Text PDF

Background: It seems that some substances of plant origin may exert health-promoting activities in diabetes and its complications, including those concerning bones. Chrysin (5,7-dihydroxyflavone), present in honey, some plants, and food of plant origin, has been reported to exert, among others, antioxidative, anti-inflammatory and antidiabetic effects. The aim of this study was to investigate the effects of chrysin on the skeletal system of rats with experimental type 1 diabetes (T1D).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!