Neuronal excitability has a large impact on network behavior, and plasticity in intrinsic excitability could serve as an important information storage mechanism. Here we ask whether postsynaptic excitability of layer V pyramidal neurons from primary visual cortex can be rapidly regulated by activity. Whole cell current-clamp recordings were obtained from visual cortical slices, and intrinsic excitability was measured by recording the firing response to small depolarizing test pulses. Inducing neurons to fire at high-frequency (30-40 Hz) in bursts for 5 min in the presence of synaptic blockers increased the firing rate evoked by the test pulse. This long-term potentiation of intrinsic excitability (LTP-IE) lasted for as long as we held the recording (>60 min). LTP-IE was accompanied by a leftward shift in the entire frequency versus current (F-I) curve and a decrease in threshold current and voltage. Passive neuronal properties were unaffected by the induction protocol, indicating that LTP-IE occurred through modification in voltage-gated conductances. Reducing extracellular calcium during the induction protocol, or buffering intracellular calcium with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid, prevented LTP-IE. Finally, blocking protein kinase A (PKA) activation prevented, whereas pharmacological activation of PKA both mimicked and occluded, LTP-IE. This suggests that LTP-IE occurs through postsynaptic calcium influx and subsequent activation of PKA. Activity-dependent plasticity in intrinsic excitability could greatly expand the computational power of individual neurons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.01059.2003 | DOI Listing |
Nano Lett
January 2025
Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany.
Understanding and controlling the electronic properties of two-dimensional materials are crucial for their potential applications in nano- and optoelectronics. Monolayer transition metal dichalcogenides have garnered significant interest due to their strong light-matter interaction and extreme sensitivity of the band structure to the presence of photogenerated electron-hole pairs. In this study, we investigate the transient electronic structure of monolayer WS on a graphene substrate after resonant excitation of the A-exciton using time- and angle-resolved photoemission spectroscopy.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.
We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil.
The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na and K ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
Background: (absent, small, or homeotic-like 1), a histone methyltransferase, has been identified as a high-risk gene for autism spectrum disorder (ASD). We previously showed that postnatal severe deficiency in the prefrontal cortex (PFC) of male and female mice caused seizures. However, the synaptic mechanisms underlying autism-like social deficits and seizures need to be elucidated.
View Article and Find Full Text PDFBiomolecules
December 2024
Institute of Pharmacology and Clinical Pharmacy, Biochemical Pharmaceutical Center (BPC) Marburg, University of Marburg, 35043 Marburg, Germany.
G protein-coupled receptors (GPCRs) regulate multiple cellular functions and represent important drug targets. More than 20 years ago, it was noted that GPCR activation (agonist binding) and signaling (G protein activation) are dependent on the membrane potential (V). While it is now proven that many GPCRs display an intrinsic voltage dependence, the molecular mechanisms of how GPCRs sense depolarization of the plasma membrane are less well defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!