While Wnt/beta-catenin signaling is known to be involved in the development of neural crest cells in zebrafish, it is unclear which Wnts are involved, and when they are required. To address these issues we employed a zebrafish line that was transgenic for an inducible inhibitor of Wnt/beta-catenin signaling, and inhibited endogenous Wnt/beta-catenin signaling at discrete times in development. Using this approach, we defined a critical period for Wnt signaling in the initial induction of neural crest, which is distinct from the later period of development when pigment cells are specified from neural crest. Blocking Wnt signaling during this early period interfered with neural crest formation without blocking development of dorsal spinal neurons. Transplantation experiments suggest that neural crest precursors must directly transduce a Wnt signal. With regard to identifying which endogenous Wnt is responsible for this initial critical period, we established that wnt8 is expressed in the appropriate time and place to participate in this process. Supporting a role for Wnt8, blocking its function with antisense morpholino oligonucleotides eliminates initial expression of neural crest markers. Taken together, these results demonstrate that Wnt signals are critical for the initial induction of zebrafish neural crest and suggest that this signaling pathway plays reiterated roles in its development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.01007 | DOI Listing |
Medicina (Kaunas)
December 2024
Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Current craniofacial reconstruction surgical methods have limitations because they involve facial deformation. The craniofacial region includes many areas where the mucosa, exposed to air, is closely adjacent to bone, with the maxilla being a prominent example of this structure. Therefore, this study explored whether human neural-crest-derived stem cells (hNTSCs) aid bone and airway mucosal regeneration during craniofacial reconstruction using a rabbit model.
View Article and Find Full Text PDFCells
December 2024
In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78464 Konstanz, Germany.
Cell-based test methods with a phenotypic readout are frequently used for toxicity screening. However, guidance on how to validate the hits and how to integrate this information with other data for purposes of risk assessment is missing. We present here such a procedure and exemplify it with a case study on neural crest cell (NCC)-based developmental toxicity of picoxystrobin.
View Article and Find Full Text PDFArab J Gastroenterol
January 2025
Department of Pediatric Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan 430015, China.
Background And Study Aims: Hirschsprung disease (HD) is a complex developmental disease that resulted from impaired proliferation and migration of neural crest cells. Despite the genetic causation of enteric nervous system have been found to be responsible for part of HD cases, the genetic aetiology of most HD patients still needs to be explored.
Patients And Methods: Whole-genome sequencing and subsequent Sanger sequencing validation analysis were performed in 13 HD children and their unaffected parents.
Front Mol Neurosci
December 2024
Department of Surgery, University of Virginia, Charlottesville, VA, United States.
Introduction: Dysfunction of the enteric nervous system (ENS) is linked to a myriad of gastrointestinal (GI) disorders. Piezo1 is a mechanosensitive ion channel found throughout the GI tract, but its role in the ENS is largely unknown. We hypothesize that Piezo1 plays an important role in the growth and development of the ENS.
View Article and Find Full Text PDFDev Biol
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. Electronic address:
While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!