In both Antirrhinum (Antirrhinum majus) and Arabidopsis (Arabidopsis thaliana), the floral B-function, which specifies petal and stamen development, is embedded in a heterodimer consisting of one DEFICIENS (DEF)/APETALA3 (AP3)-like and one GLOBOSA (GLO)/PISTILLATA (PI)-like MADS box protein. Here, we demonstrate that gene duplications in both the DEF/AP3 and GLO/PI lineages in Petunia hybrida (petunia) have led to a functional diversification of their respective members, which is reflected by partner specificity and whorl-specific functions among these proteins. Previously, it has been shown that mutations in PhDEF (formerly known as GREEN PETALS) only affect petal development. We have isolated insertion alleles for PhGLO1 (FLORAL BINDING PROTEIN1) and PhGLO2 (PETUNIA MADS BOX GENE2) and demonstrate unique and redundant properties of PhDEF, PhGLO1, and PhGLO2. Besides a full homeotic conversion of petals to sepals and of stamens to carpels as observed in phglo1 phglo2 and phdef phglo2 flowers, we found that gene dosage effects for several mutant combinations cause qualitative and quantitative changes in whorl 2 and 3 meristem fate, and we show that the PHDEF/PHGLO1 heterodimer controls the fusion of the stamen filaments with the petal tube. Nevertheless, when the activity of PhDEF, PhGLO1, and PhGLO2 are considered jointly, they basically appear to function as DEF/GLO does in Antirrhinum and to a lesser extent as AP3/PI in Arabidopsis. By contrast, our data suggest that the function of the fourth B-class MADS box member, the paleoAP3-type PETUNIA HYBRIDA TM6 (PhTM6) gene, differs significantly from the known euAP3-type DEF/AP3-like proteins; PhTM6 is mainly expressed in the developing stamens and ovary of wild-type flowers, whereas its expression level is upregulated in whorls 1 and 2 of an A-function floral mutant; PhTM6 is most likely not involved in petal development. The latter is consistent with the hypothesis that the evolutionary origin of the higher eudicot petal structure coincided with the appearance of the euAP3-type MADS box genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC385285PMC
http://dx.doi.org/10.1105/tpc.019166DOI Listing

Publication Analysis

Top Keywords

mads box
16
petunia hybrida
12
phglo1 phglo2
12
petal development
8
phdef phglo1
8
petunia
5
petal
5
phglo2
5
duplicated b-class
4
b-class heterodimer
4

Similar Publications

The awn is a bristle-like extension from the lemma of grass spikelets. In barley, the predominant cultivars possess long awns that contribute to grain yield and quality through photosynthesis. Barley is a useful cereal crop to investigate the mechanism of awn development as various awn morphological mutants are available.

View Article and Find Full Text PDF

, a notable woody oil tree species, possesses both fruit and timber value. However, the complete heterodichogamous flowering mechanism in this species remains elusive. is a crucial regulator of flower bud development in .

View Article and Find Full Text PDF

In a warm winter due to climate warming, it is necessary to suppress early flowering of autumn-sown wheat plants. Here, we propose the use of cytoplasmic genome effects for this purpose. Alloplasmic lines, or cytoplasmic substitution lines, of bread wheat () have cytoplasm from a related wild species through recurrent backcrossing and exhibit altered characteristics compared with the euplasmic lines from which they are derived.

View Article and Find Full Text PDF

Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus.

J Genet Genomics

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Appropriate flowering time in rapeseed (Brassica napus L.) is vital for preventing losses from weather, diseases, and pests. However, the molecular basis of its regulation remains largely unknown.

View Article and Find Full Text PDF

Genome Assembly and Winged fruit Gene Regulation of Chinese Wingnut: Insights from Genomic and Transcriptomic Analyses.

Genomics Proteomics Bioinformatics

December 2024

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, China.

The genomic basis and biology of winged fruit are interesting issues in ecological and evolutionary biology. Chinese wingnut (Pterocarya stenoptera) is an important garden and economic tree species in China. The genomic resources of this hardwood tree could provide advanced genomic studies of Juglandaceae and their evolutionary relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!