RNA interference is a post-transcriptional mechanism by which double-stranded RNA specifically silence expression of a corresponding gene. Small interfering double-stranded RNA (siRNA) of 21-23 nucleotides can induce the process of RNA interference. Studies from our laboratory have shown that translation of thymidylate synthase (TS) mRNA is controlled by its own protein end-product TS in a negative autoregulatory manner. Disruption of this process gives rise to increased synthesis of TS and leads to the development of cellular drug resistance to TS-targeted compounds. As a strategy to inhibit TS expression at the mRNA level, siRNAs were designed to target nucleotides 1058-1077 on human TS mRNA. Transfection of TS1058 siRNA into human colon cancer RKO cells resulted in a dose-dependent inhibition of TS expression with an IC(50) value of 10 pM but had no effect on the expression of alpha-tubulin or topoisomerase I. Inhibition of TS expression by TS1058 was maximal at 48 h and remained suppressed for up to 5 days. Pretreatment of RKO cells with TS1058 siRNA suppressed TS protein induction following exposure to raltitrexed. In addition, TS1058 restored chemosensitivity of the resistant RKO-HTStet cell line to various TS inhibitor compounds. On treatment with TS1058, IC(50) values for raltitrexed, 1843U89, and 5-fluoro-2'-deoxyuridine decreased by approximately 15-16-fold. These studies suggest that TS-targeted siRNAs are effective inhibitors of TS expression and may have therapeutic potential by themselves or as chemosensitizers in combination with TS inhibitor compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.can-03-1203 | DOI Listing |
Eur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier: Universite de Montpellier, IBMM, Pôle Chimie Balard, Campus CNRS, 34093, Montpellier, FRANCE.
After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'.
View Article and Find Full Text PDFMol Divers
January 2025
School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, People's Republic of China.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, often linked to overexpression or abnormal activation of the epidermal growth factor receptor (EGFR). The issue of developing resistance to third-generation EGFR kinase inhibitors, such as osimertinib, underscores the urgent need for new therapies to overcome this resistance. Our findings revealed that compound A8 exhibits 88.
View Article and Find Full Text PDFMol Divers
January 2025
School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, People's Republic of China.
The quinazoline scaffold serves as a fundamental framework, demonstrating potent anti-tumor activity. Employing the pharmacophore-based scaffold hopping principle, we successfully synthesized a series of FAK/PLK1 inhibitors incorporating the quinazoline scaffold. The synthesized compounds were characterized using H NMR, C NMR, and HRMS techniques.
View Article and Find Full Text PDFMol Divers
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.
Succinate dehydrogenase (SDH) has been identified as one of the ideal targets for the development of novel nematicides. However, the resistance of nematodes to fluopyram, one of the commercialized SDH inhibitors, is becoming a growing concern. Since expanding the structural diversity around an active scaffold is a useful strategy for drug development, herein a series of fluopyram analogues with a broad, biologically relevant indole moiety were synthesized and evaluated for nematicidal activity against C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!