The one-step electrostatic complexation, reduction of aqueous chloroplatinate ions, and capping of the platinum nanoparticles thus formed by hexadecylaniline Langmuir monolayers is described. The capping of the platinum nanoparticles formed spontaneously at the air-water interface by hexadecylaniline enables their facile transfer as multilayers onto suitable solid substrates by the Langmuir-Blodgett technique. The real-time reduction of the aqueous chloroplatinate ions at the air-water interface was followed by measurement of the pressure-area isotherms, while the multilayer Langmuir-Blodgett films were characterized by quartz crystal microgravimetry, transmission electron microscopy, electron diffraction, and X-ray photoemission spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2003.11.049DOI Listing

Publication Analysis

Top Keywords

platinum nanoparticles
12
hexadecylaniline langmuir
8
langmuir monolayers
8
reduction aqueous
8
aqueous chloroplatinate
8
chloroplatinate ions
8
capping platinum
8
nanoparticles formed
8
air-water interface
8
formation platinum
4

Similar Publications

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

Synergistically Enhanced Co-Adsorption of Reactant and Hydroxyl on Platinum-Modified Copper Oxide for High-Performance HMF Oxidation.

Adv Mater

January 2025

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China.

Electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an environmentally friendly route for producing the sustainable polymer monomer 2,5-furandicarboxylic acid (FDCA). Thus, precisely adjusting the synergistic adsorption among key reactive species, such as HMF and OH, on the carefully designed catalyst surface is essential for achieving satisfactory catalytic performance for HMF oxidation to FDCA as it is closely related to the adsorption strength and configuration of the reaction substrates. This kind of regulation will ultimately facilitate the improvement of HMF oxidation performance.

View Article and Find Full Text PDF

Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).

View Article and Find Full Text PDF

With enrichment of tetracycline (TC) in ecosystems, its accurate detection has become a major concern. Noble-metal nano-particles have attracted great interest as potential materials for sensing applications because of their remarkable electrical properties and adaptability. Herein, a novel electro-chemical detection technique based on carbon nano-tubes (CNTs) as the support material is developed to detect TC with high precision.

View Article and Find Full Text PDF

A next-generation STING agonist MSA-2 is a promising tumor immunotherapy strategy. However, the methods for improving the anti-tumor efficacy of MSA-2 are a lot of effort. We have demonstrated antitumor effect of platinum-modified MSA-2 (MSA-2-Pt) was better than MSA-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!