This study assesses the potential of fungal bioaugmentation and the effect of maltosyl-cyclodextrin amendment, as an approach to accelerate fluorene biodegradation in soil slurries. 47 fungal strains isolated from a contaminated site were tested in the biodegradation of fluorene. Results showed the greater efficiency of "adaptated" fungi isolated from contaminated soil vs. reference strains belonging to the collection of the laboratory. These assays allowed us to select the most efficient strain, Absidia cylindrospora, which was used in a bioaugmentation process. In the presence of Absidia cylindrospora, more than 90% of the fluorene was removed in 288 h while 576 h were necessary in the absence of fungal bioaugmentation. Maltosyl-cyclodextrin, a branched-cyclodextrin was chosen in order to optimize fluorene bioavailability and biodegradation in soil slurries. The results of this study indicate that Absidia cylindrospora and maltosyl-cyclodextrin could be used successfully in bioremediation systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:biod.0000009934.87627.91 | DOI Listing |
Biodegradation
January 2025
Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003 Granada, Spain.
A significant concentration of pharmaceuticals has been detected within composted sewage sludge. Their uncomplete removal and lack of monitoring during composting neglects their potentially toxic effects when used as a soil organic amendment. Previously, we successfully implemented a bioaugmentation-composting system focused on toxicity and pharmaceuticals' concentration reduction.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2025
Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa.
Anaerobic digesters host a variety of microorganisms, and they work together to produce biogas. While bacterial and archaeal communities have been well explored using molecular techniques, fungal community structures remain relatively understudied. The present study aims to investigate the dynamics and potential ecological functions of the predominant fungi in bacteria-bioaugmented anaerobic digesters.
View Article and Find Full Text PDFFood Chem X
January 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control. School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
Traditional cereal vinegars are fermented by microorganisms that are spontaneously enriched, leading to uncertainty in regulating the fermentation process and flavor. The objective of this study was to elucidate the impact of the predominant microorganisms, provenly and , on the solid-state fermentation (SSF) and flavor profile of cereal vinegar by several bioaugmentation strategies. The results indicated that the sequential bioaugmentation of predominant microorganisms improved the utilization of raw material and most key flavor compounds.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China.
The bioaugmentation performance is severely reduced in the treatment of high-saline pesticide wastewater because the growth and degradation activity of pesticide degraders are significantly inhibited by high salt concentrations. In this study, a heterologous biodegradation pathway comprising the seven genes mpd/pnpABCDEF responsible for the bioconversion of p-nitrophenol (PNP)-substituted organophosphorus pesticides (OPs) into β-oxoadipate and the genes encoding Vitreoscilla hemoglobin (VHb) and green fluorescent protein (GFP) were integrated into the genome of a salt-tolerant chassis Halomonas cupida J9, to generate a genetically engineered halotolerant degrader J9U-MP. RT-PCR assays demonstrated that the nine exogenous genes are successfully transcribed to mRNA in J9U-MP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!