Nickel compounds are carcinogenic and induce malignant transformation of cultured cells. Since nickel has low mutagenic potential, it may act predominantly through epigenetic mechanisms, including down-regulation of tumor suppressor genes. FHIT is a tumor suppressor gene whose expression is frequently reduced or lost in tumors and pre-malignant lesions. Previously, we have shown that the phosphohydrolase activity of Fhit protein, associated with its tumor suppressor action, is inhibited by nickel. In cells, such effect would assist in carcinogenesis. The latter could be further enhanced if nickel also lowered cellular levels of Fhit protein itself, e.g. by down-regulation of FHIT gene. To test this possibility, we determined Fhit protein and Fhit-mRNA levels in a nickel-transformed mouse cell line and in nickel-induced murine sarcomas. In B200 cells, derived by nickel treatment of BALB/c-3T3 cells and exhibiting a malignant phenotype, Fhit protein levels were 50% of those in the parental cells, while Fhit-mRNA expression remained unchanged. A decrease of up to > 90% in Fhit protein levels was also observed in 22 local sarcomas (mostly fibrosarcomas) induced by i.m. injection of nickel subsulfide in C57BL/6 and MT+ (C57BL/6 overexpressing metallothionein) mice, as compared with normal muscles. Moreover, Fhit was absent in 3 out of 10 sarcomas from MT+ mice and in 1 of 12 sarcomas from C57BL/6 mice. The lack of Fhit protein coincided with the absence of the Fhit-mRNA transcript in these tumors. However, in the other tumors, the decreased Fhit levels were not always accompanied by reduced expression of Fhit-mRNA. Thus, the observed lowering of Fhit protein levels is mostly associated with changes in mRNA expression and protein translation or turnover rates, and rarely with a full silencing of the gene itself. Overall, the decline of Fhit in cells or tissues malignantly transformed by nickel may indicate possible involvement of this effect in the mechanisms of nickel carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/b:mcbi.0000007275.22785.91 | DOI Listing |
BMC Cancer
December 2024
Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, No 127, Dongming Road, Zhengzhou, 450008, Henan, China.
Background: Esophageal cancer (ECa) is one of the most deadly cancers, with increasing incidence worldwide and poor prognosis. While endoscopy is recommended for the detection of ECa in high-risk individuals, it is not suitable for large-scale screening due to its invasiveness and inconvenience.
Methods: In this study, a novel gene methylation panel was developed for a blood-based test, and its diagnostic efficacy was evaluated using a cohort of 304 participants (203 cases, 101 controls).
Plant Physiol
June 2024
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation.
View Article and Find Full Text PDFJ Appl Genet
September 2024
Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
Oral tongue squamous cell carcinoma (OTSCC) is the most common malignancy type among males across the world. However, analysis of molecular markers could be useful in detecting the early-stage OTSCC, which would allow optimal clinical treatments and prolong the survival rate of patients consequently. The study has the objective of detecting the role of salivary biomarkers based on gene promoter hypermethylation.
View Article and Find Full Text PDFInt J Mol Sci
November 2023
Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called , we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that efficiently binds to SNAIL.
View Article and Find Full Text PDFLife Sci
April 2023
Pathology and Clinical Laboratory Services, New Mexico Veterans Administration Health Care System, University of New Mexico, United states of America.
Aims: Grape seed procyanidin extract (GSE), and milk thistle silymarin extract (MTE) contain structurally distinct polyphenols, and each agent has been shown to exert antineoplastic effects against lung cancer. We hypothesize that combinations of GSE and MTE will additively enhance their anticancer effects against lung cancer.
Materials And Methods: The anti-proliferative effects of GSE, MTE and combinations were evaluated in lung neoplastic cell lines.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!