Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intramolecular H-bonding interactions were investigated in solution for the threo and erythro diastereomeric forms of a guaiacyl beta-O-4 lignin model compound by using the NMR data obtained from hydroxyl protons. Temperature coefficients of the chemical shifts (ddelta/dT) and coupling constants (3J(HCOH)) were measured in aprotic and protic solutions: DMSO-d6, acetone-d6 and acetone-d6-water. The NMR parameters do not support the existence of strong and persistent intramolecular H-bonds that could participate in the stabilization of the guaiacyl beta-O-4 structure in solution, but instead indicate that intermolecular H-bonds to solvent predominate. 1D NOE experiments nevertheless revealed the presence of a direct chemical exchange between the hydroxyl protons, suggesting the possible existence of weak and transient intramolecular H-bonding interactions. The conformational flexibility of the threo structure was also investigated in acetone solution from the measurement of long-range 1H, 1H and 1H, 13C coupling constants and from NOESY experiments. The NMR data are not consistent with any single conformation, indicating that different conformers co-exist in solution. The experimental results support the conformational flexibility predicted by molecular dynamics simulations performed in a previous study. Finally, both experimental and theoretical approaches indicate that weak intramolecular H-bonds can exist transiently in solution, breaking and reforming as the beta-O-4 molecule undergoes conformational interconversion, but cannot be invoked as possible means of conferring rigidity to the beta-O-4 structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.1317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!