Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Statement Of Problem: Information about the influence of occlusal loading by location on the stress distribution in an implant-supported fixed partial denture and supporting bone tissue is limited.
Purpose: The purpose of this study was to investigate the effect of loading at 1 to 3 different locations on the occlusal surface of a tooth on the stress distributions in an implant-supported mandibular fixed partial denture (FPD) and surrounding bone, using 3-dimensional finite element analysis.
Material And Methods: A 3-dimensional finite element model of a mandibular section of bone (Type 2) with missing second premolar and its superstructures were used in this study. A 1-piece 4.1 x 10-mm screw-shape ITI dental implant system (solid implant) was modeled for this study. Cobalt-Chromium (Wiron 99) was used as the crown framework material and porcelain was used for occlusal surface. The implant and its superstructure were simulated in a Pro/Engineer 2000i program. Total loads at 300 N were applied at the following locations: 1) tip of buccal cusp (300 N); 2) tip of buccal cusp (150 N) and distal fossa (150 N); or 3) tip of buccal cusp (100 N), distal fossa (100 N), and mesial fossa (100 N).
Results: The results demonstrated that vertical loading at 1 location resulted in high stress values within the bone and implant. Close stress levels were observed within the bone for loading at 2 locations and 3 locations; the former created the most extreme stresses and the latter the most even stresses within the bone. With loading at 2 or 3 locations, stresses were concentrated on the framework and occlusal surface of the FPD, and low stresses were distributed to the bone.
Conclusion: For the loading conditions investigated, the optimal combination of vertical loading was found to be loading at 2 or 3 locations which decreased the stresses within the bone. In this situation, von Mises stresses were concentrated on the framework and occlusal surface of the FPD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prosdent.2003.10.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!