Adenomatous polyposis coli (APC) and End-binding protein 1 (EB1) localize to centrosomes independently of cytoplasmic microtubules (MTs) and purify with centrosomes from mammalian cell lines. Localization of EB1 to centrosomes is independent of its MT binding domain and is mediated by its C-terminus. Both APC and EB1 preferentially localize to the mother centriole and EB1 forms a cap at the end of the mother centriole that contains the subdistal appendages as defined by epsilon-tubulin localization. Like endogenous APC and EB1, fluorescent protein fusions of APC and EB1 localize preferentially to the mother centriole. Depletion of EB1 by RNA interference reduces MT minus-end anchoring at centrosomes and delays MT regrowth from centrosomes. In summary, our data indicate that APC and EB1 are functional components of mammalian centrosomes and that EB1 is important for anchoring cytoplasmic MT minus ends to the subdistal appendages of the mother centriole.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368710 | PMC |
http://dx.doi.org/10.1242/jcs.00939 | DOI Listing |
Dev Cell
December 2024
Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390.
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
The primary cilium is a cellular organelle whose assembly and disassembly are closely linked to the cell cycle. The centriole distal appendage (DA) is essential for the early stages of ciliogenesis by anchoring the mother centriole to the cell surface. Despite the identification of over twelve proteins constituting the DA, including CEP83, CEP89, CEP164, FBF1, and SCLT1, their specific functions in ciliary dynamics are not fully understood.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. Electronic address:
The primary cilium is a cellular antenna to orchestrate cell growth and differentiation. Deficient or dysfunctional cilia are frequently linked to skeletal abnormalities. Previous research demonstrated that ciliary proteins regulating axoneme elongation are essential for skeletogenesis.
View Article and Find Full Text PDFThe sperm mitochondrial sheath has proposed functions in structural support and energy production for motility. Here we define coiled coil domain containing protein 112, CCDC112, as crucial for male fertility, specifically in the assembly and function of the mitochondrial sheath. We unveiled a previously unrecognised process of epididymal mitochondrial sheath maturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!