The SAP domain transcription factor myocardin plays a critical role in the transcriptional program regulating smooth muscle cell differentiation. In this report, we describe the capacity of myocardin to physically associate with megakaryoblastic leukemia factor-1 (MKL1) and characterize the function of MKL1 in smooth muscle cells (SMCs). The MKL1 gene is expressed in most human tissues and myocardin and MKL are co-expressed in SMCs. MKL1 and myocardin physically associate via conserved leucine zipper domains. Overexpression of MKL1 transactivates serum response factor (SRF)-dependent SMC-restricted transcriptional regulatory elements including the SM22alpha promoter, smooth muscle myosin heavy chain promoter/enhancer, and SM-alpha-actin promoter/enhancer in non-SMCs. Moreover, forced expression of MKL1 and SRF in undifferentiated SRF(-/-) embryonic stem cells activates multiple endogenous SMC-restricted genes at levels equivalent to, or exceeding, myocardin. Forced expression of a dominant-negative MKL1 mutant reduces myocardin-induced activation of the SMC-specific SM22alpha promoter. In NIH3T3 fibroblasts MKL1 localizes to the cytoplasm and translocates to the nucleus in response to serum stimulation, actin treadmilling, and RhoA signaling. In contrast, in SMCs MKL1 is observed exclusively in the nucleus regardless of serum conditions or RhoA signaling. However, when actin polymerization is disrupted MKL1 translocates from the nucleus to the cytoplasm in SMCs. Together, these data were consistent with a model wherein MKL1 transduces signals from the cytoskeleton to the nucleus in SMCs and regulates SRF-dependent SMC differentiation autonomously or in concert with myocardin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M400961200 | DOI Listing |
Biol Reprod
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX USA.
The physiological and clinical importance of motile cilia in reproduction is well recognized, however, the specific role they play in transport through the oviduct and how ciliopathies lead to subfertility and infertility is still unclear. The contribution of cilia beating, fluid flow, and smooth muscle contraction to overall progressive transport within the oviduct remains under debate. Therefore, we investigated the role of cilia in the oviduct transport of preimplantation eggs and embryos using a combination of genetic and advanced imaging approaches.
View Article and Find Full Text PDFInt J Gen Med
December 2024
Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yun Nan, People's Republic of China.
Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.
Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database.
Front Mol Neurosci
December 2024
Department of Neurology, Henan Province People's Hospital, Xinxiang Medical University, Zhengzhou, China.
Background: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is one of the most common inherited cerebral small vessel diseases caused by the NOTCH3 gene mutation. This mutation leads to the accumulation of NOTCH3 extracellular domain protein (NOTCH3) into the cerebral arterioles, causing recurrent stroke, white matter lesions, and cognitive impairment. With the development of gene sequencing technology, cysteine-sparing mutations can also cause CADASIL disease, however, the pathogenicity and pathogenic mechanisms of cysteine-sparing mutations remain controversial.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.
Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.
View Article and Find Full Text PDFCureus
December 2024
General Surgery, King's College Hospital London, Dubai Hills, Dubai, ARE.
Idiopathic megacolon and megarectum are rare clinical conditions characterized by irreversible dilation of the colon and rectum without an identifiable organic cause. The underlying pathophysiology remains poorly understood, though hypotheses suggest abnormalities in the enteric nervous system or smooth muscle dysfunction. These conditions present significant diagnostic and therapeutic challenges, especially in cases refractory to conservative treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!