Amino acid profiles of leaf, stem, and root tissues from nodulated and nonnodulated Leucaena leucocephala (Lam.) de Wit plants were determined by gas chromatography-mass spectrometry. High concentrations of mimosine and several other potentially toxic nonprotein amino acids, including pipecolic acid and two isomers of hydroxypipecolic acid, were identified in the tissues. Five metabolites remain unidentified. Of the foliar free amino acid nitrogen, 57-66% was associated with the potentially toxic amino acids. Major constituents in the leaf tissues of nonnodulated plants were mimosine and hydroxypipecolic acid (isomer 1). Mimosine was recovered in both the neutral plus basic and acidic amino acid fractions. Major differences between amino acid profiles of nodulated and nonnodulated roots were the low percentages of asparagine + aspartate (3.6% of the total pool compared to 33% in nodulated plants) and pipecolic acid in nonnodulated roots (1% of the total compared to 12.5% in nodulated plants). A novel plant betaine (dihydroxypipecolic acid betaine) was identified by fast-atom-bombardment mass spectrometry in leaf tissues, albeit at relatively low concentrations (< 1 micro mol per gram fresh weight). Analyses of the xylem sap collected from nodulated plants confirmed that Leucaena is an asparagine transporter, as suggested by the high concentrations of asparagine and the low concentrations of ureides in its root nodules. Amino acid profiles of xylem sap from nonnodulated plants showed extremely low concentrations of asparagine + aspartate (0.12 micro mol ml(-1)), whereas asparagine + aspartate was the major constituent (4.38 micro mol ml(-1)) in the xylem sap of nodulated plants. Two nonprotein amino acids, pipecolic acid and hydroxypipecolic acid, were major constituents of the xylem sap of nodulated and nonnodulated plants, respectively. Three unidentified compounds detected in xylem sap samples from both nodulated and nonnodulated plants did not correspond with any of the peaks characterized from tissue samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/12.1.23 | DOI Listing |
Plant Cell Environ
January 2025
Civil, Environmental, and Mining Engineering, University of Western Australia, Perth, Western Australia, Australia.
Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
School of Metallurgy and Environment, Central South University, Changsha, China.
The synergistic application of calcium (Ca) and magnesium (Mg) was investigated to mitigate cadmium (Cd) uptake and translocation in rice grown in Cd-contaminated soil. A pot experiment was conducted using different Ca:Mg molar ratios (Ca1:Mg2, Ca2:Mg1, and Ca1:Mg1) to evaluate their effect on Cd uptake. The results showed that the Ca1:Mg1 treatment achieved the highest reduction in grain Cd content (54.
View Article and Find Full Text PDFJ Adv Res
December 2024
College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China. Electronic address:
Introduction: 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na homeostasis under salt stress.
View Article and Find Full Text PDFJ Biotechnol
February 2025
School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
Heavy metal pollution is a worldwide problem that threaten agricultural production and human health. Methyl jasmonate (MeJA) is a phytohormone that could enhance plant resistance against various stresses. However, the mechanism of MeJA in cadmium (Cd) uptake, distribution, and translocation in rice plants remains elusive.
View Article and Find Full Text PDFInt J Phytoremediation
December 2024
College of Resources and Environment, Yunnan Agricultural University, Kunming, P.R. China.
Lead (Pb) pollution in soil affects growth of plants. Plants' endogenous hormones play an important role in resistance to Pb of plant. In order to explore the hormone-based mechanisms of Pb accumulationin in hyperaccumulator , a pot experiment was conducted to analyze the contents of endogenous hormones (auxin, gibberellin, abscisic acid, and cytokinin) and related genes expressions, and Pb contents of , as well as the transporter (cation exchangers (CAX), heavy metal ATPases (HMA), and ATP-binding cassette (ABC)) concentrations under foliar spraying of indoleacetic acid (IAA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!