Beech trees (Fagus sylvatica L.) show reduced stomatal conductance and increased leaf area index in response to increased atmospheric CO(2) concentration. To determine whether the reduction in stomatal conductance results in lower stand evapotranspiration, we compared transpiration on a leaf-area basis and stand evapotranspiration on a ground-area basis in young European beech trees growing in greenhouses at ambient (360 +/- 34 micro mol mol(-1)) and elevated (698 +/- 10 micro mol mol(-1)) CO(2) concentrations. Trees were grown in homogenized natural soil at constant soil water supply for two growing seasons. At light saturation, leaf transpiration rates were, on average, 18% lower in the elevated CO(2) treatment than in the ambient CO(2) treatment. Mean transpiration coefficients (transpiration/net CO(2) uptake) of leaves were 179 and 110 in the ambient and elevated CO(2) treatments, respectively, indicating improved water use efficiency in trees in the elevated CO(2) treatment. Total leaf conductance was decreased by 32% at light saturation. The elevated CO(2) treatment resulted in a 14% reduction in stand evapotranspiration. In both CO(2) treatments, evapotranspiration increased linearly at a rate of 0.2 kg H(2)O m(-2) day(-1) for each 1 degrees C rise in air temperature between 14 and 25 degrees C. We conclude that, under Central European conditions, water losses from deciduous forest stands will be reduced by a doubling of tropospheric CO(2) concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/14.7-8-9.997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!