Layered double hydroxide as an efficient drug reservoir for folate derivatives.

Biomaterials

National Nanohybrid Materials Laboratory, School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151 747, South Korea.

Published: July 2004

Folic acid derivatives such as folinic acid and methotrexate (MTX) have been successfully hybridized with layered double hydroxide (LDH) by ion-exchange reaction. The X-ray diffraction patterns and spectroscopic analyses indicate that these molecules intercalated into the hydroxide interlayer space are stabilized in the tilted longitudinal monolayer mode by electrostatic interaction. No significant changes in their structural and functional properties are found in the hybrids. The cellular uptake test of MTX-LDH hybrid is carried out in the fibroblast (human tendon) and SaOS-2 cell line (Osteosarcoma, human) by in vitro MTT (3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide) assay. The initial proliferation of SaOS-2 cell is more strongly suppressed by treatment with MTX-LDH hybrid than with MTX alone. This study clearly shows that LDH not only plays a role as a biocompatible-delivery matrix for drugs but also facilitates a significant increase in the delivery efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2003.09.083DOI Listing

Publication Analysis

Top Keywords

layered double
8
double hydroxide
8
mtx-ldh hybrid
8
saos-2 cell
8
hydroxide efficient
4
efficient drug
4
drug reservoir
4
reservoir folate
4
folate derivatives
4
derivatives folic
4

Similar Publications

The excellent optical and electronic properties of halide perovskite materials have attracted researchers to investigate this particular field. However, the instability in ambient conditions and toxicity of materials like lead have given some setbacks to commercial use. To overcome these issues, perovskite-inspired materials with less toxic and excellent air-stable materials are being studied.

View Article and Find Full Text PDF

Background: The rise of antibiotic-resistant pathogens has intensified the search for novel antimicrobial agents. This study aimed to isolate from local soil samples and evaluate its antimicrobial properties, along with optimizing the production of bioactive compounds.

Methods: Soil samples were collected from local regions, processed, and analysed for Streptomyces strains isolation using morphological characteristics and molecular identification through 16S rRNA gene PCR assay.

View Article and Find Full Text PDF

A novel adsorbent ZnAl-LDHs/SiO (ZA/SiO) was prepared by blending urea mixture of ZnSO and Al(SO) while using SiO as a support form. The adsorption properties of ZA/SiO for the removal of toxic metal ions (Cu(II) and Cr(VI)) from water were evaluated. By batch experiment method to investigate the ZA/SiO adsorption of Cu(II) and Cr(VI) solution treatment effect.

View Article and Find Full Text PDF

Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.

Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.

View Article and Find Full Text PDF

Rationale: The double-layer sign of the anterior lens capsule during continuous curvilinear capsulorrhexis (CCC) in cataract surgery is a rare phenomenon. This case report highlights the occurrence of this sign and provides a practical technique for managing it.

Patient Concerns: A 55-year-old Chinese woman presented with blurred vision in her left eye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!