Thymidylate synthase (EC 2.1.1.45) (TS) catalyzes the conversion of dUMP to dTMP and is therefore indispensable for DNA replication in actively dividing cells. The enzyme is a critical target at which chemotherapeutic agents such as fluoropyrimidines (e.g., 5-fluorouracil and 5-fluoro-2'-deoxyuridine) and folic acid analogues (e.g., raltitrexed, LY231514, ZD9331, and BW1843U89) are directed. These agents exert their effects through the generation of metabolites that bind the active site of TS and inhibit catalytic activity. The binding of ligands to the TS molecule leads to dramatic changes in the conformation of the enzyme, particularly within the C-terminal domain. Stabilization of the enzyme and an increase in its intracellular level are associated with ligand binding and may be important in cellular response to TS-directed drugs. In the present study, we have examined molecular features of the TS molecule that control its degradation. We find that the C-terminal conformational shift is not required for ligand-mediated stabilization of the enzyme. In addition, we demonstrate that the N-terminus of the TS polypeptide, which is extended in the mammalian enzyme and is disordered in crystal structures, is a primary determinant of the enzyme's half-life. Finally, we show that TS turnover is carried out by the 26S proteasome in a ubiquitin-independent manner. These findings provide the basis for a mechanistic understanding of TS degradation and its regulation by antimetabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi035894pDOI Listing

Publication Analysis

Top Keywords

thymidylate synthase
8
stabilization enzyme
8
enzyme
5
structural determinants
4
determinants intracellular
4
intracellular degradation
4
degradation human
4
human thymidylate
4
synthase thymidylate
4
synthase 21145
4

Similar Publications

Beyond Chemotherapy: Exploring 5-FU Resistance and Stemness in Colorectal Cancer.

Eur J Pharmacol

January 2025

School of Biotechnology, KIIT Deemed to be University, Bhubaneswar - 751024, Odisha, India. Electronic address:

Article Synopsis
  • Colorectal cancer (CRC) presents ongoing global health challenges, particularly in overcoming treatment resistance in cancer stem cells (CSCs) and the limitations of 5-fluorouracil (5-FU) therapy.
  • Combination therapies and targeted treatments, such as FOLFOXIRI and various monoclonal antibodies, can boost the effectiveness of 5-FU, especially in specific tumor types, but come with considerable toxicity.
  • Advances in personalized medicine, immunotherapy, and nanomedicine are vital for improving treatment outcomes by addressing the complexities of CRC and enhancing drug delivery while reducing resistance to conventional therapies.
View Article and Find Full Text PDF

Repurposing the Antidiabetic Drugs Glyburide, Gliquidone, and Glipizide in Combination with Benznidazole for Infection.

Pharmaceuticals (Basel)

December 2024

Department of Biochemistry, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico.

Infection with the protozoan parasite causes human Chagas disease. Benznidazole (BNZ) and nifurtimox are the current drugs for the treatment; however, they induce severe adverse side effects in patients; therefore, there is a need to improve the treatment effectiveness and efficiency of these drugs for its safer use. : Glyburide, glipizide, and gliquidone, hypoglycemic drugs for diabetes treatment, were previously predicted to bind to dihydrofolate reductase-thymidylate synthase from by in silico docking analysis; they also showed antiproliferative effects against epimastigotes, the stage of the insect vector.

View Article and Find Full Text PDF

Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce abundance, and the Stri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in . A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments.

View Article and Find Full Text PDF

Unlabelled: Methotrexate is used to manage moderate to severe psoriasis and psoriatic arthritis. Methotrexate acts by inhibiting the enzymes involved in nucleotide synthesis. Methotrexate polyglutamates (MTXPGs) have a higher potency to inhibit Dihydrofolate reductase (DHFR), 5-aminoimidazole-4-carboxamide ribonucleotide transformylase (ATIC), and thymidylate synthase (TS), compared to naïve methotrexate.

View Article and Find Full Text PDF

The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!