Flux conditions using liquid indium bypass the thermodynamically stable structure and yield new forms of the phases RENiGe2 (RE = Dy, Er, Yb, Lu). The compounds crystallize in the orthorhombic Immm space group and possess the YIrGe2 structure type. Lattice parameters for ErNiGe2, DyNiGe2, YbNiGe2, and LuNiGe2 are a = 4.114(1) A, b = 8.430(2) A, c = 15.741(5) A; a = 4.1784(9) A, b = 8.865(2) A, c = 15.745(3) A; a = 4.0935(6) A, b = 8.4277(13) A, c = 15.751(2) A, and a = 4.092(1) A, b = 8.418(3) A, c = 15.742(5) A, respectively. These phases represent a new structural arrangement (beta) of the compound type RENiGe2 as another set of compounds with identical stoichiometry are known to adopt the orthorhombic Cmcm CeNiSi2 type structure (alpha). In this paper we report the crystal and electronic band structure of four new members of the YIrGe2 structure type, as well as an investigation of the relative thermodynamic stabilities of the two forms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic035303j | DOI Listing |
Materials (Basel)
January 2025
Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea.
In this paper, we demonstrate a blazed phase grating to achieve tunable beam steering and propose a novel algorithm to reduce the stripe noise in wrapped phase. To control the diffraction angle to steer light to the desired direction, an electrically tunable transmission-type beam deflector based on liquid crystals is introduced, and electric fields are applied to the patterned indium tin oxide electrodes to change its phase retardation. Two different 2π phase-wrapping methods are applied to obtain various diffraction angles within the minimum cell-gap, and the method of equal interval of phase achieves a worthwhile diffraction efficiency compared to the methods based on equal interval of diffraction angle.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
Urea is an important biomarker for diagnosing various kidney and liver disorders. However, many existing methods rely on invasive blood sampling, which can potentially harm patients. Saliva has been recently recognized as a noninvasive and easily collectible alternative to blood for urea quantification.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
Nanobiohybrids for solar-driven methanogenesis present a promising solution to the global energy crisis. However, conventional semiconductor-based nanobiohybrids face challenges such as limited tunability and poor biocompatibility, leading to undesirable spontaneous electron and proton transfer that compromise their structural stability and CH selectivity. Herein, we introduced eutectic gallium-indium alloys (EGaIn), featuring a self-limiting surface oxide layer surrounding the liquid metal core after sonication, integrated with Methanosarcina barkeri (M.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!