AI Article Synopsis

  • The study focuses on the synthesis of various iron hydride complexes by reacting FeCl2 with phosphites and NaBH4, resulting in complexes with bipyridine and phenanthroline ligands.
  • The protonation of the initial hydride complexes leads to the formation of unstable dihydrogen derivatives, characterized by specific magnetic resonance measurements.
  • Additional complexes such as carbonyl and nitrile derivatives were created by replacing the dihydrogen ligand, along with the synthesis of aryldiazene complexes through reactions with aryldiazonium cations.

Article Abstract

Hydride complexes [FeH(N-N)P3]BPh4 (1, 2) [N-N = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen); P = P(OEt)4, PPh(OEt)2, and PPh2OEt] were prepared by allowing FeCl2(N-N) to react with phosphite in the presence of NaBH4. The hydrides [FeH(bpy)2P]BPh4 (3) [P = P(OEt)3 and PPh(OEt)2] were prepared by reacting the tris(2,2'-bipyridine) [Fe(bpy)3]Cl2.5H2O complex with the appropriate phosphite in the presence of NaBH4. The protonation reaction of 1 and 2 with acid was studied and led to thermally unstable (above -20 degrees C) dihydrogen [Fe(eta2-H2)(N-N)P3]2+ (4, 5) derivatives. The presence of the H2 ligand is indicated by short T(1 min) values (3.1-3.6 ms) and by J(HD) measurements (31.2-32.5 Hz) of the partially deuterated derivatives. Carbonyl [Fe(CO)(bpy)[P(OEt)3]3](BPh4)2 (6) and nitrile [Fe(CH3CN)(N-N)P3](BPh4)2 (7, 8) [N-N = bpy, phen; P = P(OEt)3 and PPh(OEt)2] complexes were prepared by substituting the H2 ligand in the eta2-H2 4, 5 derivatives. Aryldiazene complexes [Fe(ArN=NH)(N-N)P3](BPh4)2 (9, 10, 11) (Ar = C6H5, 4-CH3C6H4) were also obtained by allowing hydride [FeH(N-N)P3]BPh4 derivatives to react with aryldiazonium cations in CH2Cl2 at low temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0348190DOI Listing

Publication Analysis

Top Keywords

hydride complexes
8
phosphite presence
8
presence nabh4
8
poet3 pphoet2]
8
preparation reactivity
4
reactivity mixed-ligand
4
mixed-ligand ironii
4
ironii hydride
4
complexes
4
complexes phosphites
4

Similar Publications

The reactions of LAlH (L = HC(CMeNAr), Ar = 2,6-PrCH) (1) with diphenylphosphane oxide [PhP(O)H], diphenylphosphinamide [PhP(O)NH], and diaryl/alkyl phosphane [(RO)P(O)H (R = Ph, or Pr)] afford their corresponding compounds with compositions LAl(H)OP(Ph) (2), LAl[OP(Ph)] (3), LAl{[N(H)P(O)(Ph)][OP(Ph)]} (4), LAl(OPr) (5), and LAl(OPh) (6), respectively. These reactions probably undergo a process of dehydrogenation coupling, deaminating dehydrogenation coupling, or chain-breaking coupling. It is noteworthy to mention that the reaction of compound 1 with 2 equiv.

View Article and Find Full Text PDF

We report the synthesis and characterization of bis(diiminate)-supported tricoordinated zinc complexes () and demonstrate the catalytic activity of one representative compound in the hydroboration of nitriles and carbodiimides using pinacolborane (HBpin). Experimental and theoretical studies were performed to elucidate the reaction mechanism. Our findings indicate that the hydroboration reaction initiates with the formation of a tricoordinated zinc hydride intermediate, followed by the subsequent attack of nitriles and carbodiimides.

View Article and Find Full Text PDF

Catalytic reduction of NAD(P) to NAD(P)H.

Chem Commun (Camb)

January 2025

Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.

1,4-Dihydronicotinamide adenine dinucleotide (NADH) and its phosphate ester (NADPH) are essential cofactors required for all living cells, playing pivotal roles in multiple biological processes such as energy metabolism and biosynthesis. NADPH is produced during photosynthesis by the combination of photosystem II, where water is oxidised, and photosystem I, where NADP is reduced. This review focuses on catalytic NAD(P) (and its analogues) reduction to generate 1,4-NAD(P)H without formation of other regioisomers and the dimer.

View Article and Find Full Text PDF

A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.

View Article and Find Full Text PDF

Palladium-Catalyzed Oxidative Allene-Allene Cross-Coupling.

J Am Chem Soc

January 2025

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.

Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!