A highly sensitive and selective method, using isotope-dilution liquid chromatography with tandem mass spectrometry (LC/MS/MS), for quantification of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), an important biomarker of oxidative stress, was developed and compared with a method using an enzyme-linked immunosorbent assay (ELISA). The synthesis of (15)N(5)-8-OHdG is described. In this study, 140 urine samples were collected from workers in a coke oven plant, including samples from 49 control workers and 91 workers who had been occupationally exposed to polyaromatic hydrocarbons (PAHs). The major urinary metabolite of PAHs, 1-hydroxypyrene (1-OHP), was measured for the exposed workers. Results from the present study showed a significant correlation between these two measurements for determination of 8-OHdG (p < 0.05, r(2) = 0.70). However, only the LC/MS/MS measurements of urinary levels of 8-OHdG showed a significant difference between the exposed and the control subjects (p < 0.05). The ELISA method failed to demonstrate this difference. Furthermore, only by using the LC/MS/MS method was a significant correlation observed between the urinary levels of 1-OHP and 8-OHdG. These findings suggest that a highly specific and sensitive analytical method such as isotope-dilution LC/MS/MS is extremely important and necessary for accurate measurement and a comprehensive study of oxidative stress in human subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.1367DOI Listing

Publication Analysis

Top Keywords

urinary 8-hydroxy-2'-deoxyguanosine
8
isotope-dilution liquid
8
liquid chromatography
8
tandem mass
8
mass spectrometry
8
enzyme-linked immunosorbent
8
immunosorbent assay
8
method isotope-dilution
8
oxidative stress
8
urinary levels
8

Similar Publications

The alarming surge in electronic waste (e-waste) in Hong Kong has heightened concerns regarding occupational exposure to a myriad of pollutants. Among these, polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and per- and polyfluoroalkyl substances (PFASs) are prevalent and known for their harmful effects, including the induction of oxidative stress and DNA damage, thereby contributing to various diseases. This study addresses gaps in knowledge by investigating exposure levels of these pollutants-measured via hydroxylated PAHs (OH-PAHs), phthalate metabolites (mPAEs), and PFASs-in urine from 101 e-waste workers and 100 office workers.

View Article and Find Full Text PDF

Purpose: Reducing renal ischemia is crucial for the function and survival of grafts from nonheartbeat donors, as it leads to inflammatory responses and tubulointerstitial damage. The primary concern with organs from nonheartbeat donors is the long warm ischemia period and reperfusion injury following renal transplantation. This study had two main goals; one goal is to determine how Necrostatin-1 targeting the PANoptosome affects PANoptosis in the nonheart-beating donor rat model.

View Article and Find Full Text PDF

Background: Single-walled (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) can pose risks in biological systems leading to harmful effects, such as, reactive oxygen species (ROS) formation, DNA damage, mitochondrial dysfunction, and ultimately, the cell death through apoptosis.

Objectives: The study assessed the nephrotoxicity of the SWCNTs and SWCNTs-Ag-TiO nanocomposites through in vitro and in vivo experiments, assessing oxidative stress, genotoxicity, and safety for biomedical applications.

Methodology: In vitro, HK-2 cell lines were utilized to evaluate the effects of nanomaterials on cellular activity, apoptosis, ROS generation, and micronuclei formations.

View Article and Find Full Text PDF

Background: Asthma and allergic diseases are among the common causes of morbidity and mortality globally. Various environmental pollutants are linked to the development of asthma and allergic diseases. Evidence on the role of oxidative stress and immune markers in the association of environmental pollutants with asthma and allergy is scant.

View Article and Find Full Text PDF

Topiroxostat-A Safer Uricostatic Drug with Enhanced Renal Protection: A Narrative Review.

J Assoc Physicians India

November 2024

Professor and Head, Department of Nephrology, M S Ramaiah Medical College, Bengaluru, Karnataka, India.

Topiroxostat, a selective xanthine oxidase inhibitor, effectively reduces serum urate levels in hyperuricemia patients with or without gout. The present narrative review aims to evaluate the existing evidence regarding the effectiveness of topiroxostat on renal function in patients with and without kidney disease. A systematic search was conducted to identify relevant studies on renal function and topiroxostat published between 2005 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!