Diallel analysis of production traits among domestic, exotic and mutant germplasms of Lycopersicon.

Genet Mol Res

Consejo Nacional de Investigaciones Científicas y Técnicas, Consejo de Investigaciones de la Universidad Nacional de Rosario, Cátedra de Genética, Facultad de Ciencias Agrarias UNR, CC 14, S2125ZAA Zavalla, Argentina.

Published: June 2003

The effects of wild germplasm on tomato fruit shelf life have not yet been completely evaluated. Three different genotypes of Lycopersicon esculentum (a cultivated variety, a homozygote for nor and a homozygote for rin), LA1385 of L. esculentum var. cerasiforme, LA722 of L. pimpinellifolium, and 10 diallel hybrids were assayed. Mean values of fruit shelf life, weight, shape, and mean number of flowers per cluster were analyzed after Griffing (1956, Aust. J. Biology 9: 463-493), method 2, model 1. Both general and specific combining abilities (GCA and SCA) were significant for the four traits. Negative unidirectional dominance was detected for fruit weight and shelf life, while bidirectional dominance was detected for fruit shape and mean number of flowers per cluster. SCA was greater than GCA for shelf life, so nonadditive effects predominantly accounted for this trait. In the heterozygous state, rin had smaller mean effects than nor. Wild accessions were able to prolong shelf life per se, and in crosses to the cultivated variety. The cross between the homozygote for nor and LA722 yielded the longest shelf life among hybrids.

Download full-text PDF

Source

Publication Analysis

Top Keywords

shelf life
24
effects wild
8
fruit shelf
8
cultivated variety
8
shape number
8
number flowers
8
flowers cluster
8
dominance detected
8
detected fruit
8
shelf
6

Similar Publications

Natural pigments, or natural colorants, are frequently utilized in the food industry due to their diverse functional and nutritional attributes. Beyond their color properties, these pigments possess several biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and neuroprotective effects, as well as benefits for eye health. This review aims to provide a timely overview of the potential of natural pigments in the pharmaceutical, medical, and food industries.

View Article and Find Full Text PDF

Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier.

Int J Biol Macromol

January 2025

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.

View Article and Find Full Text PDF

Myricetin has a significant role in pharmacology, specifically in traditional Chinese medicine. The most intriguing pharmacological action of myricetin consists of its multi-pathway anticancer effects. Therefore, rapid and selective isolation of myricetin from garlic and apple juices has notable pharmacological benefits.

View Article and Find Full Text PDF

The rapid production of reactive oxygen species (ROS) due to lipid peroxidation of unsaturated bonds in wholesome vegetable oil during its storage and utilization happens to be the most alarming cause of concern in the edible oil industry. In researching for an ideal candidate to be used as an antioxidant, it has been identified that engineered CeO nanoparticle with curated surface chemistry (Ce3+/Ce4+ ratio) displays an enhanced ROS scavenging activity. Herein the CeO nanoparticles (∼100-110 nm) were manufactured though controlled synthesis protocol to achieve the desired outcome.

View Article and Find Full Text PDF

Rheology modifiers (RMs) are polymeric molecules providing rheological control of formulations, which are important in product application, shelf-life, and aesthetic perception. Bio-derived polyethylene glycol (PEG)-based RMs thicken formulations through nonionic-associative thickening where at least two hydrophobic end groups from a RM molecule interact with other hydrophobic groups of other RM molecules or ingredients in the formulation to form an associative network. We report a comprehensive two-dimensional liquid chromatography (2D-LC) separation of partly bio-derived PEG-based RMs in size exclusion chromatography (SEC) × reversed-phase liquid chromatography (RPLC) mode for the separation of RM components based on both molecular weight distribution and end group hydrophobe distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!