Isoprenylcysteine carboxyl methyltransferase (Icmt) methylates the carboxyl-terminal isoprenylcysteine of CAAX proteins (e.g., Ras and Rho proteins). In the case of the Ras proteins, carboxyl methylation is important for targeting of the proteins to the plasma membrane. We hypothesized that a knockout of Icmt would reduce the ability of cells to be transformed by K-Ras. Fibroblasts harboring a floxed Icmt allele and expressing activated K-Ras (K-Ras-Icmt(flx/flx)) were treated with Cre-adenovirus, producing K-Ras-Icmt(Delta/Delta) fibroblasts. Inactivation of Icmt inhibited cell growth and K-Ras-induced oncogenic transformation, both in soft agar assays and in a nude mice model. The inactivation of Icmt did not affect growth factor-stimulated phosphorylation of Erk1/2 or Akt1. However, levels of RhoA were greatly reduced as a consequence of accelerated protein turnover. In addition, there was a large Ras/Erk1/2-dependent increase in p21(Cip1), which was probably a consequence of the reduced levels of RhoA. Deletion of p21(Cip1) restored the ability of K-Ras-Icmt(Delta/Delta) fibroblasts to grow in soft agar. The effect of inactivating Icmt was not limited to the inhibition of K-Ras-induced transformation: inactivation of Icmt blocked transformation by an oncogenic form of B-Raf (V599E). These studies identify Icmt as a potential target for reducing the growth of K-Ras- and B-Raf-induced malignancies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC338259 | PMC |
http://dx.doi.org/10.1172/JCI18829 | DOI Listing |
Proc Natl Acad Sci U S A
October 2024
Department of Molecular Microbiology, Washington University, St. Louis, MO 63110.
The Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI).
View Article and Find Full Text PDFGenomics
September 2023
Department of Orthopaedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, China. Electronic address:
This study explored whether EGR1-MAP3K14-NF-κB axis regulated ferroptosis and IVD cartilage generation. EGR1 and MAP3K14 expression levels were determined in CEP tissues of IVDD patients and intermittent cyclic mechanical tension (ICMT)-treated CEP cells. After EGR1 and MAP3K14 were altered in ICMT-treated CEP cells, the expression levels of degeneration- and ferroptosis-related proteins were measured.
View Article and Find Full Text PDFElife
February 2021
Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
A farnesylated and methylated form of prelamin A called progerin causes Hutchinson-Gilford progeria syndrome (HGPS). Inhibiting progerin methylation by inactivating the isoprenylcysteine carboxylmethyltransferase (ICMT) gene stimulates proliferation of HGPS cells and improves survival of -deficient mice. However, we don't know whether inactivation improves phenotypes in an authentic HGPS mouse model.
View Article and Find Full Text PDFSci Rep
July 2017
Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071, Murcia, Spain.
Plant Cell
October 2008
Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA.
Isoprenylated proteins bear an isoprenylcysteine methyl ester at the C terminus. Although isoprenylated proteins have been implicated in meristem development and negative regulation of abscisic acid (ABA) signaling, the functional role of the terminal methyl group has not been described. Here, we show that transgenic Arabidopsis thaliana plants overproducing isoprenylcysteine methyltransferase (ICMT) exhibit ABA insensitivity in stomatal closure and seed germination assays, establishing ICMT as a negative regulator of ABA signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!