Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent molecular phylogenetic studies of polyploid plants have successfully clarified complex patterns of reticulate evolution. In this study of Elymus repens, an allohexaploid member of the wheat tribe Triticeae, chloroplast and nuclear DNA data reveal an extreme reticulate pattern, revealing at least five distinct gene lineages coexisting within the species, acquired through a possible combination of allohexaploidy and introgression from both within and beyond the Triticeae. Earlier cytogenetic studies of E. repens suggested that Hordeum (genome H) and Pseudoroegneria (St) were genome donors to E. repens. Chloroplast DNA data presented here (from the rpoA gene and from the region between trnT and trnF) identify three potential maternal genome donors (Pseudoroegneria, Thinopyrum, and Dasypyrum), and information from previous molecular work suggests that, of these, Pseudoroegneria is the most likely maternal donor. Nuclear starch synthase gene data indicate that both Hordeum and Pseudoroegneria have contributed to the nuclear genome of E. repens, in agreement with cytogenetic data. However, these data also show unexpected contributions from Taeniatherum, and from two additional donors of unknown identity. One of the sequences of unknown origin falls within the Triticeae, but is not closely associated with any of the sampled diploid genera. The second falls outside of the clade containing Triticeae and its outgroup Bromus, suggesting the acquisition of genetic material from a surprisingly divergent source. Bias toward the amplification of certain starch synthase variants has complicated attempts to thoroughly sample from within individuals, but the data clearly indicate a complex pattern of reticulate evolution, consistent not only with allohexaploidy, but also with introgression from unexpectedly divergent sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10635150490424402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!